Question
Mathematics Question on integral
∫0π/4(cos3x+sin3x)2cos2xsin2xdx is equal to:
A
121
B
91
C
61
D
31
Answer
61
Explanation
Solution
Divide the numerator and denominator by cosx:
∫0π/4(1+tan3x)2tan2xsec2xdx.
Let 1+tan3x=t. Then:
tan2xsec2xdx=3dt.
The limits transform as:
- When x=0, t=1,
- and when x=4π, t=2.
Substitute into the integral:
∫0π/4(1+tan3x)2tan2xsec2xdx=31∫12t2dt.
Solve the integral:
31∫12t−2dt=31[−t1]12.
Simplify:
31[−21−(−1)]=31[−21+1]=31×21=61.