Solveeit Logo

Question

Mathematics Question on integral

0π/4cos2xsin2x(cos3x+sin3x)2dx\int_{0}^{\pi/4} \frac{\cos^2 x \sin^2 x}{\left( \cos^3 x + \sin^3 x \right)^2} \, dx is equal to:

A

112\frac{1}{12}

B

19\frac{1}{9}

C

16\frac{1}{6}

D

13\frac{1}{3}

Answer

16\frac{1}{6}

Explanation

Solution

Divide the numerator and denominator by cosx\cos x:

0π/4tan2xsec2xdx(1+tan3x)2.\int_0^{\pi/4} \frac{\tan^2 x \sec^2 x \, dx}{(1 + \tan^3 x)^2}.

Let 1+tan3x=t1 + \tan^3 x = t. Then:

tan2xsec2xdx=dt3.\tan^2 x \sec^2 x \, dx = \frac{dt}{3}.

The limits transform as:

  • When x=0x = 0, t=1t = 1,
  • and when x=π4x = \frac{\pi}{4}, t=2t = 2.

Substitute into the integral:

0π/4tan2xsec2xdx(1+tan3x)2=1312dtt2.\int_0^{\pi/4} \frac{\tan^2 x \sec^2 x \, dx}{(1 + \tan^3 x)^2} = \frac{1}{3} \int_1^2 \frac{dt}{t^2}.

Solve the integral:

1312t2dt=13[1t]12.\frac{1}{3} \int_1^2 t^{-2} \, dt = \frac{1}{3} \left[ -\frac{1}{t} \right]_1^2.

Simplify:

13[12(1)]=13[12+1]=13×12=16.\frac{1}{3} \left[ -\frac{1}{2} - (-1) \right] = \frac{1}{3} \left[ -\frac{1}{2} + 1 \right] = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}.