Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

0π/2sin100xsin100x+cos100xdx\int_{0}^{\pi /2}{\frac{{{\sin }^{100}}x}{{{\sin }^{100}}x+{{\cos }^{100}}x}\,\,dx} is equal to

A

π2\frac{\pi }{2}

B

π12\frac{\pi }{12}

C

π4\frac{\pi }{4}

D

π8\frac{\pi }{8}

Answer

π4\frac{\pi }{4}

Explanation

Solution

0π/2sin100xsin100x+cos100xdx\int_{0}^{\pi /2}{\frac{{{\sin }^{100}}\,x}{{{\sin }^{100}}\,x+\,{{\cos }^{100}}x}}\,\,dx
=0π/2sin100sin100x+sin100(π2x)dx=\int_{0}^{\pi /2}{\frac{{{\sin }^{100}}}{{{\sin }^{100}}x+{{\sin }^{100}}\left( \frac{\pi }{2}-x \right)}}\,\,dx
=π202=π4=\frac{\frac{\pi }{2}-0}{2}=\frac{\pi }{4}
[abf(x)dxf(x)+f(a+bx)=ba2]\left[ \because \,\,\int_{a}^{b}{\frac{f(x)\,dx}{f(x)+f(a+b-x)}=\frac{b-a}{2}} \right]
Alternate I=0π/2sin100xsin100x+cos100xdxI=\int_{0}^{\pi /2}{\frac{{{\sin }^{100}}x}{{{\sin }^{100}}x+{{\cos }^{100}}x}\,\,\,dx} .. (i)
I=0π/2sin100(π2x)sin100(π2x)cos100(π2x)dxI=\int_{0}^{\pi /2}{\frac{{{\sin }^{100}}\,\left( \frac{\pi }{2}-x \right)}{{{\sin }^{100}}\left( \frac{\pi }{2}-x \right)-{{\cos }^{100}}\left( \frac{\pi }{2}-x \right)}}\,\,\,dx
[bydefineintegral property. a0f(x)dx=0af(ax)dx ]\left[ \begin{aligned} & \because \,\,by\,\,define\,\,\text{integral property}\text{.} \\\ & \int_{a}^{0}{f(x)\,dx=\int_{0}^{a}{f(a-x)\,dx}} \\\ \end{aligned} \right]
I=0π/2cos100xcos100x+sin100xdxI=\int_{0}^{\pi /2}{\frac{{{\cos }^{100}}x}{{{\cos }^{100}}x+{{\sin }^{100}}x}}\,dx .. (ii)
On adding Eqs. (i) and (ii), we get
2I=0π/21dx=π20I=π42I=\int_{0}^{\pi /2}{1\,\,dx\,=\frac{\pi }{2}-0\,\,\Rightarrow \,I=\frac{\pi }{4}}