Solveeit Logo

Question

Mathematics Question on Definite Integral

020π(sinx+cosx)2dx\int_{0}^{20\pi} (|\sin x| + |\cos x|)^2 \,dx
is equal to

A

10(π+4)10(π+4)

B

10(π+2)10(π+2)

C

20(π2)20(π-2)

D

20(π+2)20(π+2)

Answer

20(π+2)20(π+2)

Explanation

Solution

The correct answer is (D) : 20(π+2)
020π(sinx+cosx)2dx\int_{0}^{20\pi} (|\sin x| + |\cos x|)^2 \,dx
200π(1+sin(2x))dx20 \int_{0}^{\pi} (1 + |\sin(2x)|) \,dx
400π2(1+sin(2x))dx40 \int_{0}^{\frac{\pi}{2}} (1 + \sin(2x)) \,dx
40(xcos(2x)2)0π240 \left( x - \frac{\cos(2x)}{2} \right) \Bigg|_{0}^{\frac{\pi}{2}}
=40(π2+12+12)= 40(\frac{\pi}{2}+\frac{1}{2}+\frac{1}{2})
=20(π+2)= 20(\pi +2)