Question
Mathematics Question on Definite Integral
∫02πθsin6θcosθdθ is equal to
A
6π
B
163π
C
316π
D
0
Answer
0
Explanation
Solution
Integral Equality : The equality 0 ∫ 2a f(x)dx = 2 0 ∫ a f(x)dx holds when the function f(x) satisfies the condition f(2a - x) = f(x).
Zero Integral Equivalence : The equation 0 ∫ 2a f(x)dx = 0 is valid if the function f(x) follows the pattern f(2a - x) = -f(x).
Given the integral I = 0 ∫ 2π a - bcosθ sin^2θ dθ, we observe that f(2π - θ) = a - bcos(2π - θ) / (2sin(2π - θ)cos(2π - θ)) simplifies to a - bcosθ / (-2sinθcosθ) = -f(θ).
Hence, it's established that I = 0 ∫ 2π a - bcosθ sin^2θ dθ = 0.
The correct answer is option (D): 0