Solveeit Logo

Question

Mathematics Question on Definite Integral

02(2x23x+[x12])dx,\int_{0}^{2} \left( |2x^2 - 3x| + \left[x - \frac{1}{2}\right] \right) \, dx,
where [t] is the greatest integer function, is equal to

A

76\frac{7}{6}

B

1912\frac{19}{12}

C

3112\frac{31}{12}

D

32\frac{3}{2}

Answer

1912\frac{19}{12}

Explanation

Solution

The correct answer is (B) : 1912\frac{19}{12}
022x23xdx+02[x12]dx\int_{0}^{2} |2x^2 - 3x| \, dx + \int_{0}^{2} \left[x - \frac{1}{2}\right] \, dx
=03/2(3x2x2)dx+3/22(2x23x)dx+01/21dx+1/23/20dx+3/221dx= \int^{3/2}_{0}(3x-2x^2)dx+\int^{2}_{3/2}(2x^2-3x)dx+\int^{1/2}_{0}-1dx+\int^{3/2}_{1/2}0dx+\int^{2}_{3/2}1dx
=(3x222x33)03/2+(2x333x22)3/2212+12= (\frac{3x^2}{2}-\frac{2x^3}{3})|^{3/2}_{0}+(\frac{2x^3}{3}-\frac{3x^2}{2})|^{2}_{3/2}-\frac{1}{2}+\frac{1}{2}
(2782712)+(16362712+278)\left(\frac{27}{8} - \frac{27}{12}\right) + \left(\frac{16}{3} - 6 - \frac{27}{12} + \frac{27}{8}\right)
=1912= \frac{19}{12}