Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

011(x2+16)(x2+25)dx\int_{0}^{1} \frac{1}{\left(x^{2}+16\right)\left(x^{2}+25\right)} \,dx is equal to

A

15[14tan1(14)15tan1(15)]\frac{1}{5} \left[\frac{1}{4} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} tan^{-1}\left(\frac{1}{5}\right)\right]

B

19[14tan1(14)15tan1(15)]\frac{1}{9} \left[\frac{1}{4} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} tan^{-1}\left(\frac{1}{5}\right)\right]

C

14[14tan1(14)15tan1(15)]\frac{1}{4} \left[\frac{1}{4} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} tan^{-1}\left(\frac{1}{5}\right)\right]

D

19[15tan1(14)14tan1(15)]\frac{1}{9} \left[\frac{1}{5} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{4} tan^{-1}\left(\frac{1}{5}\right)\right]

Answer

19[14tan1(14)15tan1(15)]\frac{1}{9} \left[\frac{1}{4} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} tan^{-1}\left(\frac{1}{5}\right)\right]

Explanation

Solution

The correct option is (B): 19[14tan1(14)15tan1(15)]\frac{1}{9} \left[\frac{1}{4} tan^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} tan^{-1}\left(\frac{1}{5}\right)\right].

I=011(x2+16)(x2+25)dxI =\int_{0}^{1} \frac{1}{\left(x^{2}+16\right)\left(x^{2}+25\right)} d x

=1901(1x2+161x2+25)dx=\frac{1}{9} \int_{0}^{1}\left(\frac{1}{x^{2}+16}-\frac{1}{x^{2}+25}\right) d x

=19[14tan1x415tan1x5]01=\frac{1}{9}\left[\frac{1}{4} \tan ^{-1} \frac{x}{4}-\frac{1}{5} \tan ^{-1} \frac{x}{5}\right]_{0}^{1}

=19[14tan1(14)15tan1(15)]=\frac{1}{9}\left[\frac{1}{4} \tan ^{-1}\left(\frac{1}{4}\right)-\frac{1}{5} \tan ^{-1}\left(\frac{1}{5}\right)\right]