Solveeit Logo

Question

Question: The number of solutions of the matrix equation $X^2$ = I other than I, is (where I is the 2 x 2 unit...

The number of solutions of the matrix equation X2X^2 = I other than I, is (where I is the 2 x 2 unit matrix)

A

0

B

1

C

2

D

More than 2

Answer

More than 2

Explanation

Solution

Let the 2×22 \times 2 matrix be X=(abcd)X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. The given equation is X2=IX^2 = I, where I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.

First, calculate X2X^2:

X2=(abcd)(abcd)=(a2+bcab+bdca+dccb+d2)X^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2+bc & ab+bd \\ ca+dc & cb+d^2 \end{pmatrix}

Equating this to II, we get the following system of equations:

  1. a2+bc=1a^2+bc = 1
  2. ab+bd=0    b(a+d)=0ab+bd = 0 \implies b(a+d) = 0
  3. ca+dc=0    c(a+d)=0ca+dc = 0 \implies c(a+d) = 0
  4. cb+d2=1cb+d^2 = 1

From equations (2) and (3), we have two cases:

Case 1: a+d0a+d \neq 0

If a+d0a+d \neq 0, then from b(a+d)=0b(a+d)=0 and c(a+d)=0c(a+d)=0, it must be that b=0b=0 and c=0c=0. In this case, XX is a diagonal matrix: X=(a00d)X = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}.

Substitute b=0b=0 and c=0c=0 into equations (1) and (4):

  1. a2+0=1    a2=1    a=±1a^2+0 = 1 \implies a^2=1 \implies a = \pm 1
  2. 0+d2=1    d2=1    d=±10+d^2 = 1 \implies d^2=1 \implies d = \pm 1

This gives us four possible diagonal matrices:

  • If a=1,d=1a=1, d=1: X=(1001)=IX = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I. This is the identity matrix.
  • If a=1,d=1a=1, d=-1: X=(1001)X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. This is a solution.
  • If a=1,d=1a=-1, d=1: X=(1001)X = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}. This is a solution.
  • If a=1,d=1a=-1, d=-1: X=(1001)=IX = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I. This is a solution.

Among these four, II is the one to be excluded. So we have 3 solutions from this case: (1001)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, (1001)\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.

Case 2: a+d=0a+d = 0

If a+d=0a+d = 0, then d=ad = -a. Substitute d=ad=-a into equations (1) and (4):

  1. a2+bc=1a^2+bc = 1
  2. cb+(a)2=1    cb+a2=1cb+(-a)^2 = 1 \implies cb+a^2 = 1.

Both equations are identical (a2+bc=1a^2+bc=1).

So, any matrix of the form X=(abca)X = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} that satisfies a2+bc=1a^2+bc=1 is a solution. We need to find solutions other than II. Note that I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} has a=1,d=1a=1, d=1, so a+d=20a+d=2 \neq 0. Thus II is not included in this case.

Let's look for examples in this case:

  • If a=0a=0, then bc=1bc=1. We can choose any non-zero real number for bb and set c=1/bc=1/b. For example, if b=1b=1, c=1c=1: X=(0110)X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. Check: X2=(0110)(0110)=(1001)=IX^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I. This is a solution. If b=2b=2, c=1/2c=1/2: X=(021/20)X = \begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}. This is also a solution. Since bb can be any non-zero real number, there are infinitely many solutions of this form.

  • If a=1a=1, then 1+bc=1    bc=01+bc=1 \implies bc=0. Since a+d=0a+d=0, we have d=1d=-1. If b=0b=0, then cc can be any real number. X=(10c1)X = \begin{pmatrix} 1 & 0 \\ c & -1 \end{pmatrix}. For example, if c=1c=1: X=(1011)X = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}. Check: X2=(1011)(1011)=(10111)=(1001)=IX^2 = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1-1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I. This is a solution. Note that if c=0c=0, this gives X=(1001)X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, which was already found in Case 1. Since cc can be any real number (e.g., c=1,2,3,c=1, 2, 3, \dots), there are infinitely many solutions of this form (excluding c=0c=0).

  • If a=1a=-1, then 1+bc=1    bc=01+bc=1 \implies bc=0. Since a+d=0a+d=0, we have d=1d=1. If b=0b=0, then cc can be any real number. X=(10c1)X = \begin{pmatrix} -1 & 0 \\ c & 1 \end{pmatrix}. For example, if c=1c=1: X=(1011)X = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}. This is a solution. Note that if c=0c=0, this gives X=(1001)X = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, which was already found in Case 1. Since cc can be any real number, there are infinitely many solutions of this form (excluding c=0c=0).

From Case 2, we have already found infinitely many solutions other than II. For example, the matrices (0b1/b0)\begin{pmatrix} 0 & b \\ 1/b & 0 \end{pmatrix} for any bR,b0b \in \mathbb{R}, b \neq 0 are solutions. Also, (10c1)\begin{pmatrix} 1 & 0 \\ c & -1 \end{pmatrix} for any cR,c0c \in \mathbb{R}, c \neq 0 are solutions. And (10c1)\begin{pmatrix} -1 & 0 \\ c & 1 \end{pmatrix} for any cR,c0c \in \mathbb{R}, c \neq 0 are solutions.

Since we have found infinitely many solutions (e.g., (0110)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (021/20)\begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}, (1011)\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, (1021)\begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}, etc.), the number of solutions other than II is more than 2.

The solutions are:

  1. The three diagonal matrices found in Case 1: (1001)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, (1001)\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.
  2. Infinitely many non-diagonal matrices of the form (abca)\begin{pmatrix} a & b \\ c & -a \end{pmatrix} where a2+bc=1a^2+bc=1 and at least one of b,cb,c is non-zero. For example, (0110)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (021/20)\begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}, (1051)\begin{pmatrix} 1 & 0 \\ 5 & -1 \end{pmatrix}, (1701)\begin{pmatrix} -1 & 7 & \\ 0 & 1 \end{pmatrix}, etc.

Thus, the total number of solutions other than II is infinite.