Question
Question: If a, b and c are the roots of the cubic $x^3 - 3x^2 + 2 = 0$ then the value of the determinant $\b...
If a, b and c are the roots of the cubic x3−3x2+2=0 then the value of the determinant
(b+c)2b2c2a2(c+a)2c2a2b2(a+b)2
is equal to

-108
Solution
Let the given cubic equation be x3−3x2+2=0. Let a, b, c be the roots of this equation. From Vieta's formulas:
- Sum of roots: a+b+c=−(−3)/1=3
- Sum of products of roots taken two at a time: ab+bc+ca=0/1=0
- Product of roots: abc=−2/1=−2
We need to evaluate the determinant: D=(b+c)2b2c2a2(c+a)2c2a2b2(a+b)2
From a+b+c=3, we can write: b+c=3−a c+a=3−b a+b=3−c
Substitute these into the determinant: D=(3−a)2b2c2a2(3−b)2c2a2b2(3−c)2
Apply the column operations C1→C1−C2 and C3→C3−C2: D=(3−a)2−a2b2−(3−b)2c2−c2a2(3−b)2c2a2−a2b2−(3−b)2(3−c)2−c2
Simplify the terms using X2−Y2=(X−Y)(X+Y): (3−a)2−a2=(3−a−a)(3−a+a)=(3−2a)(3)=9−6a b2−(3−b)2=(b−(3−b))(b+(3−b))=(2b−3)(3)=6b−9 (3−c)2−c2=(3−c−c)(3−c+c)=(3−2c)(3)=9−6c
Substitute these simplified terms back into the determinant: D=9−6a6b−90a2(3−b)2c206b−99−6c
Now, expand the determinant along the first row: D=(9−6a)[(3−b)2(9−6c)−(6b−9)c2]−a2[(6b−9)(9−6c)−0]+0 D=(9−6a)(9−6c)(3−b)2−(9−6a)(6b−9)c2−a2(6b−9)(9−6c)
Factor out common terms: D=(9−6a)(9−6c)(3−b)2−(9−6a)(6b−9)c2−a2(6b−9)(9−6c) Notice that (6b−9)=−3(3−2b) and (9−6a)=3(3−2a) and (9−6c)=3(3−2c). D=3(3−2a)⋅3(3−2c)(3−b)2−3(3−2a)⋅(−3)(3−2b)c2−a2(−3)(3−2b)⋅3(3−2c) D=9(3−2a)(3−2c)(3−b)2+9(3−2a)(3−2b)c2+9a2(3−2b)(3−2c)
Factor out 9: D=9[(3−2a)(3−2c)(3−b)2+(3−2a)(3−2b)c2+a2(3−2b)(3−2c)]
Let's use the property that a,b,c are roots of x3−3x2+2=0. So, a3−3a2+2=0. Also, a+b+c=3. Consider the expression P(x)=x3−3x2+2. P(x)=(x−a)(x−b)(x−c). Consider P′(x)=3x2−6x=3x(x−2). Consider P′′(x)=6x−6=6(x−1).
Let's test if x=1 is a root: 13−3(1)2+2=1−3+2=0. So x=1 is a root. Let a=1. Then b+c=3−1=2. The equation becomes (x−1)(x2−2x−2)=0. The other roots are b,c=22±4−4(1)(−2)=22±12=1±3. Let a=1,b=1+3,c=1−3.
Now substitute a=1 into the determinant: D=(b+c)2b2c212(c+1)2c212b2(1+b)2 Since b+c=2: D=4b2c21(3−b−1)2c21b2(3−c−1)2=4b2c21(2−b)2c21b2(2−c)2
Apply C1→C1−C2 and C3→C3−C2: D=4−1b2−(2−b)2c2−c21(2−b)2c21−1b2−(2−b)2(2−c)2−c2
D=3(b−(2−b))(b+(2−b))01(2−b)2c20(b−(2−b))(b+(2−b))(2−c−c)(2−c+c)
D=3(2b−2)(2)01(2−b)2c20(2b−2)(2)(2−2c)(2)
D=34(b−1)01(2−b)2c204(b−1)4(1−c)
Now expand this determinant: D=3[(2−b)2⋅4(1−c)−4(b−1)c2]−1[4(b−1)⋅4(1−c)−0]+0 D=12(1−c)(2−b)2−12(b−1)c2−16(b−1)(1−c)
We know b=1+3 and c=1−3. b−1=3 1−c=1−(1−3)=3 2−b=2−(1+3)=1−3 c2=(1−3)2=1−23+3=4−23 (2−b)2=(1−3)2=4−23
Substitute these values: D=12(3)(4−23)−12(3)(4−23)−16(3)(3) D=0−16(3) D=−48
Let's recheck the expansion for D=9[(3−2a)(3−2c)(3−b)2+(3−2a)(3−2b)c2+a2(3−2b)(3−2c)] with a=1,b=1+3,c=1−3. 3−2a=3−2(1)=1 3−2b=3−2(1+3)=3−2−23=1−23 3−2c=3−2(1−3)=3−2+23=1+23 (3−b)2=(3−(1+3))2=(2−3)2=4−43+3=7−43 c2=(1−3)2=1−23+3=4−23 a2=12=1
D=9[(1)(1+23)(7−43)+(1)(1−23)(4−23)+(1)(1−23)(1+23)] D=9[(7−43+143−24)+(4−23−83+12)+(1−4(3))] D=9[(−17+103)+(16−103)+(1−12)] D=9[−17+103+16−103−11] D=9[−17+16−11] D=9[−12] D=−108
There is a discrepancy. Let's recheck the general expansion of the determinant. D=XY0a2(3−b)2c20YZ X=9−6a Y=6b−9 Z=9−6c
D=X((3−b)2Z−Yc2)−a2(YZ−0) D=X(3−b)2Z−XYc2−a2YZ D=XZ(3−b)2−XYc2−a2YZ D=(9−6a)(9−6c)(3−b)2−(9−6a)(6b−9)c2−a2(6b−9)(9−6c) This expansion is correct.
Let's recheck the values: a=1,b=1+3,c=1−3 9−6a=9−6(1)=3 9−6c=9−6(1−3)=9−6+63=3+63 3−b=3−(1+3)=2−3 (3−b)2=(2−3)2=4−43+3=7−43 6b−9=6(1+3)−9=6+63−9=63−3 c2=(1−3)2=1−23+3=4−23 a2=12=1
D=(3)(3+63)(7−43)−(3)(63−3)(4−23)−(1)(63−3)(3+63) D=3[(3+63)(7−43)−(63−3)(4−23)−31(63−3)(3+63)] D=3[(21−123+423−72)−(243−36−12+63)−(23−1)(3+63)] D=3[(−51+303)−(303−48)−(63+36−3−63)] D=3[−51+303−303+48−(33)] D=3[−51+48−33] D=3[−3−33] D=3[−36] D=−108
The value is consistent. The answer is -108.
Final check of the steps:
- Substitute b+c=3−a, etc.
- Apply C1→C1−C2 and C3→C3−C2.
- Simplify the entries using X2−Y2=(X−Y)(X+Y).
- Expand the determinant.
- Substitute the specific roots a=1,b=1+3,c=1−3 to calculate the value.
The calculation is −108.