Solveeit Logo

Question

Question: If a, b and c are the roots of the cubic $x^3 - 3x^2 + 2 = 0$ then the value of the determinant $\b...

If a, b and c are the roots of the cubic x33x2+2=0x^3 - 3x^2 + 2 = 0 then the value of the determinant

(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix}

is equal to

Answer

-108

Explanation

Solution

Let the given cubic equation be x33x2+2=0x^3 - 3x^2 + 2 = 0. Let a, b, c be the roots of this equation. From Vieta's formulas:

  1. Sum of roots: a+b+c=(3)/1=3a+b+c = -(-3)/1 = 3
  2. Sum of products of roots taken two at a time: ab+bc+ca=0/1=0ab+bc+ca = 0/1 = 0
  3. Product of roots: abc=2/1=2abc = -2/1 = -2

We need to evaluate the determinant: D=(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2D = \begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix}

From a+b+c=3a+b+c=3, we can write: b+c=3ab+c = 3-a c+a=3bc+a = 3-b a+b=3ca+b = 3-c

Substitute these into the determinant: D=(3a)2a2a2b2(3b)2b2c2c2(3c)2D = \begin{vmatrix} (3-a)^2 & a^2 & a^2 \\ b^2 & (3-b)^2 & b^2 \\ c^2 & c^2 & (3-c)^2 \end{vmatrix}

Apply the column operations C1C1C2C_1 \to C_1 - C_2 and C3C3C2C_3 \to C_3 - C_2: D=(3a)2a2a2a2a2b2(3b)2(3b)2b2(3b)2c2c2c2(3c)2c2D = \begin{vmatrix} (3-a)^2 - a^2 & a^2 & a^2 - a^2 \\ b^2 - (3-b)^2 & (3-b)^2 & b^2 - (3-b)^2 \\ c^2 - c^2 & c^2 & (3-c)^2 - c^2 \end{vmatrix}

Simplify the terms using X2Y2=(XY)(X+Y)X^2 - Y^2 = (X-Y)(X+Y): (3a)2a2=(3aa)(3a+a)=(32a)(3)=96a(3-a)^2 - a^2 = (3-a-a)(3-a+a) = (3-2a)(3) = 9-6a b2(3b)2=(b(3b))(b+(3b))=(2b3)(3)=6b9b^2 - (3-b)^2 = (b-(3-b))(b+(3-b)) = (2b-3)(3) = 6b-9 (3c)2c2=(3cc)(3c+c)=(32c)(3)=96c(3-c)^2 - c^2 = (3-c-c)(3-c+c) = (3-2c)(3) = 9-6c

Substitute these simplified terms back into the determinant: D=96aa206b9(3b)26b90c296cD = \begin{vmatrix} 9-6a & a^2 & 0 \\ 6b-9 & (3-b)^2 & 6b-9 \\ 0 & c^2 & 9-6c \end{vmatrix}

Now, expand the determinant along the first row: D=(96a)[(3b)2(96c)(6b9)c2]a2[(6b9)(96c)0]+0D = (9-6a) \left[ (3-b)^2 (9-6c) - (6b-9)c^2 \right] - a^2 \left[ (6b-9)(9-6c) - 0 \right] + 0 D=(96a)(96c)(3b)2(96a)(6b9)c2a2(6b9)(96c)D = (9-6a)(9-6c)(3-b)^2 - (9-6a)(6b-9)c^2 - a^2(6b-9)(9-6c)

Factor out common terms: D=(96a)(96c)(3b)2(96a)(6b9)c2a2(6b9)(96c)D = (9-6a)(9-6c)(3-b)^2 - (9-6a)(6b-9)c^2 - a^2(6b-9)(9-6c) Notice that (6b9)=3(32b)(6b-9) = -3(3-2b) and (96a)=3(32a)(9-6a) = 3(3-2a) and (96c)=3(32c)(9-6c) = 3(3-2c). D=3(32a)3(32c)(3b)23(32a)(3)(32b)c2a2(3)(32b)3(32c)D = 3(3-2a) \cdot 3(3-2c) (3-b)^2 - 3(3-2a) \cdot (-3)(3-2b) c^2 - a^2 (-3)(3-2b) \cdot 3(3-2c) D=9(32a)(32c)(3b)2+9(32a)(32b)c2+9a2(32b)(32c)D = 9(3-2a)(3-2c)(3-b)^2 + 9(3-2a)(3-2b)c^2 + 9a^2(3-2b)(3-2c)

Factor out 9: D=9[(32a)(32c)(3b)2+(32a)(32b)c2+a2(32b)(32c)]D = 9 \left[ (3-2a)(3-2c)(3-b)^2 + (3-2a)(3-2b)c^2 + a^2(3-2b)(3-2c) \right]

Let's use the property that a,b,ca, b, c are roots of x33x2+2=0x^3 - 3x^2 + 2 = 0. So, a33a2+2=0a^3 - 3a^2 + 2 = 0. Also, a+b+c=3a+b+c=3. Consider the expression P(x)=x33x2+2P(x) = x^3 - 3x^2 + 2. P(x)=(xa)(xb)(xc)P(x) = (x-a)(x-b)(x-c). Consider P(x)=3x26x=3x(x2)P'(x) = 3x^2 - 6x = 3x(x-2). Consider P(x)=6x6=6(x1)P''(x) = 6x - 6 = 6(x-1).

Let's test if x=1x=1 is a root: 133(1)2+2=13+2=01^3 - 3(1)^2 + 2 = 1 - 3 + 2 = 0. So x=1x=1 is a root. Let a=1a=1. Then b+c=31=2b+c = 3-1 = 2. The equation becomes (x1)(x22x2)=0(x-1)(x^2-2x-2) = 0. The other roots are b,c=2±44(1)(2)2=2±122=1±3b, c = \frac{2 \pm \sqrt{4 - 4(1)(-2)}}{2} = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3}. Let a=1,b=1+3,c=13a=1, b=1+\sqrt{3}, c=1-\sqrt{3}.

Now substitute a=1a=1 into the determinant: D=(b+c)21212b2(c+1)2b2c2c2(1+b)2D = \begin{vmatrix} (b+c)^2 & 1^2 & 1^2 \\ b^2 & (c+1)^2 & b^2 \\ c^2 & c^2 & (1+b)^2 \end{vmatrix} Since b+c=2b+c=2: D=411b2(3b1)2b2c2c2(3c1)2=411b2(2b)2b2c2c2(2c)2D = \begin{vmatrix} 4 & 1 & 1 \\ b^2 & (3-b-1)^2 & b^2 \\ c^2 & c^2 & (3-c-1)^2 \end{vmatrix} = \begin{vmatrix} 4 & 1 & 1 \\ b^2 & (2-b)^2 & b^2 \\ c^2 & c^2 & (2-c)^2 \end{vmatrix}

Apply C1C1C2C_1 \to C_1 - C_2 and C3C3C2C_3 \to C_3 - C_2: D=41111b2(2b)2(2b)2b2(2b)2c2c2c2(2c)2c2D = \begin{vmatrix} 4-1 & 1 & 1-1 \\ b^2-(2-b)^2 & (2-b)^2 & b^2-(2-b)^2 \\ c^2-c^2 & c^2 & (2-c)^2-c^2 \end{vmatrix}

D=310(b(2b))(b+(2b))(2b)2(b(2b))(b+(2b))0c2(2cc)(2c+c)D = \begin{vmatrix} 3 & 1 & 0 \\ (b-(2-b))(b+(2-b)) & (2-b)^2 & (b-(2-b))(b+(2-b)) \\ 0 & c^2 & (2-c-c)(2-c+c) \end{vmatrix}

D=310(2b2)(2)(2b)2(2b2)(2)0c2(22c)(2)D = \begin{vmatrix} 3 & 1 & 0 \\ (2b-2)(2) & (2-b)^2 & (2b-2)(2) \\ 0 & c^2 & (2-2c)(2) \end{vmatrix}

D=3104(b1)(2b)24(b1)0c24(1c)D = \begin{vmatrix} 3 & 1 & 0 \\ 4(b-1) & (2-b)^2 & 4(b-1) \\ 0 & c^2 & 4(1-c) \end{vmatrix}

Now expand this determinant: D=3[(2b)24(1c)4(b1)c2]1[4(b1)4(1c)0]+0D = 3 \left[ (2-b)^2 \cdot 4(1-c) - 4(b-1)c^2 \right] - 1 \left[ 4(b-1) \cdot 4(1-c) - 0 \right] + 0 D=12(1c)(2b)212(b1)c216(b1)(1c)D = 12(1-c)(2-b)^2 - 12(b-1)c^2 - 16(b-1)(1-c)

We know b=1+3b=1+\sqrt{3} and c=13c=1-\sqrt{3}. b1=3b-1 = \sqrt{3} 1c=1(13)=31-c = 1-(1-\sqrt{3}) = \sqrt{3} 2b=2(1+3)=132-b = 2-(1+\sqrt{3}) = 1-\sqrt{3} c2=(13)2=123+3=423c^2 = (1-\sqrt{3})^2 = 1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3} (2b)2=(13)2=423(2-b)^2 = (1-\sqrt{3})^2 = 4 - 2\sqrt{3}

Substitute these values: D=12(3)(423)12(3)(423)16(3)(3)D = 12(\sqrt{3})(4-2\sqrt{3}) - 12(\sqrt{3})(4-2\sqrt{3}) - 16(\sqrt{3})(\sqrt{3}) D=016(3)D = 0 - 16(3) D=48D = -48

Let's recheck the expansion for D=9[(32a)(32c)(3b)2+(32a)(32b)c2+a2(32b)(32c)]D = 9 \left[ (3-2a)(3-2c)(3-b)^2 + (3-2a)(3-2b)c^2 + a^2(3-2b)(3-2c) \right] with a=1,b=1+3,c=13a=1, b=1+\sqrt{3}, c=1-\sqrt{3}. 32a=32(1)=13-2a = 3-2(1) = 1 32b=32(1+3)=3223=1233-2b = 3-2(1+\sqrt{3}) = 3-2-2\sqrt{3} = 1-2\sqrt{3} 32c=32(13)=32+23=1+233-2c = 3-2(1-\sqrt{3}) = 3-2+2\sqrt{3} = 1+2\sqrt{3} (3b)2=(3(1+3))2=(23)2=443+3=743(3-b)^2 = (3-(1+\sqrt{3}))^2 = (2-\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} c2=(13)2=123+3=423c^2 = (1-\sqrt{3})^2 = 1 - 2\sqrt{3} + 3 = 4 - 2\sqrt{3} a2=12=1a^2 = 1^2 = 1

D=9[(1)(1+23)(743)+(1)(123)(423)+(1)(123)(1+23)]D = 9 \left[ (1)(1+2\sqrt{3})(7-4\sqrt{3}) + (1)(1-2\sqrt{3})(4-2\sqrt{3}) + (1)(1-2\sqrt{3})(1+2\sqrt{3}) \right] D=9[(743+14324)+(42383+12)+(14(3))]D = 9 \left[ (7-4\sqrt{3}+14\sqrt{3}-24) + (4-2\sqrt{3}-8\sqrt{3}+12) + (1-4(3)) \right] D=9[(17+103)+(16103)+(112)]D = 9 \left[ (-17+10\sqrt{3}) + (16-10\sqrt{3}) + (1-12) \right] D=9[17+103+1610311]D = 9 \left[ -17+10\sqrt{3} + 16-10\sqrt{3} - 11 \right] D=9[17+1611]D = 9 \left[ -17 + 16 - 11 \right] D=9[12]D = 9 \left[ -12 \right] D=108D = -108

There is a discrepancy. Let's recheck the general expansion of the determinant. D=Xa20Y(3b)2Y0c2ZD = \begin{vmatrix} X & a^2 & 0 \\ Y & (3-b)^2 & Y \\ 0 & c^2 & Z \end{vmatrix} X=96aX = 9-6a Y=6b9Y = 6b-9 Z=96cZ = 9-6c

D=X((3b)2ZYc2)a2(YZ0)D = X((3-b)^2 Z - Yc^2) - a^2(YZ - 0) D=X(3b)2ZXYc2a2YZD = X(3-b)^2 Z - XYc^2 - a^2 YZ D=XZ(3b)2XYc2a2YZD = XZ(3-b)^2 - XYc^2 - a^2 YZ D=(96a)(96c)(3b)2(96a)(6b9)c2a2(6b9)(96c)D = (9-6a)(9-6c)(3-b)^2 - (9-6a)(6b-9)c^2 - a^2(6b-9)(9-6c) This expansion is correct.

Let's recheck the values: a=1,b=1+3,c=13a=1, b=1+\sqrt{3}, c=1-\sqrt{3} 96a=96(1)=39-6a = 9-6(1) = 3 96c=96(13)=96+63=3+639-6c = 9-6(1-\sqrt{3}) = 9-6+6\sqrt{3} = 3+6\sqrt{3} 3b=3(1+3)=233-b = 3-(1+\sqrt{3}) = 2-\sqrt{3} (3b)2=(23)2=443+3=743(3-b)^2 = (2-\sqrt{3})^2 = 4-4\sqrt{3}+3 = 7-4\sqrt{3} 6b9=6(1+3)9=6+639=6336b-9 = 6(1+\sqrt{3})-9 = 6+6\sqrt{3}-9 = 6\sqrt{3}-3 c2=(13)2=123+3=423c^2 = (1-\sqrt{3})^2 = 1-2\sqrt{3}+3 = 4-2\sqrt{3} a2=12=1a^2 = 1^2 = 1

D=(3)(3+63)(743)(3)(633)(423)(1)(633)(3+63)D = (3)(3+6\sqrt{3})(7-4\sqrt{3}) - (3)(6\sqrt{3}-3)(4-2\sqrt{3}) - (1)(6\sqrt{3}-3)(3+6\sqrt{3}) D=3[(3+63)(743)(633)(423)13(633)(3+63)]D = 3 \left[ (3+6\sqrt{3})(7-4\sqrt{3}) - (6\sqrt{3}-3)(4-2\sqrt{3}) - \frac{1}{3}(6\sqrt{3}-3)(3+6\sqrt{3}) \right] D=3[(21123+42372)(2433612+63)(231)(3+63)]D = 3 \left[ (21-12\sqrt{3}+42\sqrt{3}-72) - (24\sqrt{3}-36-12+6\sqrt{3}) - (2\sqrt{3}-1)(3+6\sqrt{3}) \right] D=3[(51+303)(30348)(63+36363)]D = 3 \left[ (-51+30\sqrt{3}) - (30\sqrt{3}-48) - (6\sqrt{3}+36-3-6\sqrt{3}) \right] D=3[51+303303+48(33)]D = 3 \left[ -51+30\sqrt{3} - 30\sqrt{3}+48 - (33) \right] D=3[51+4833]D = 3 \left[ -51+48-33 \right] D=3[333]D = 3 \left[ -3-33 \right] D=3[36]D = 3 \left[ -36 \right] D=108D = -108

The value is consistent. The answer is -108.

Final check of the steps:

  1. Substitute b+c=3ab+c=3-a, etc.
  2. Apply C1C1C2C_1 \to C_1 - C_2 and C3C3C2C_3 \to C_3 - C_2.
  3. Simplify the entries using X2Y2=(XY)(X+Y)X^2-Y^2=(X-Y)(X+Y).
  4. Expand the determinant.
  5. Substitute the specific roots a=1,b=1+3,c=13a=1, b=1+\sqrt{3}, c=1-\sqrt{3} to calculate the value.

The calculation is 108-108.