Solveeit Logo

Question

Question: Insert three harmonic means between 2 and 3....

Insert three harmonic means between 2 and 3.

Explanation

Solution

We solve this problem by starting with assuming the harmonic means between 2 and 3 as A, B, C. then we use the relation between A.P and H.P and say that 12,1A,1B,1C,13\dfrac{1}{2},\dfrac{1}{A},\dfrac{1}{B},\dfrac{1}{C},\dfrac{1}{3} are in A.P. Then we use the formula for nth{{n}^{th}} term of A.P, an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d and find the value of d by substituting 13\dfrac{1}{3} as the fifth term. Then we use the same formula to find the values of A, B and C.

Complete step by step answer:
As we need to insert 3 harmonic means between 2 and 3, let us assume the harmonic means as A, B, C.
Then we can say that 2, A, B, C, 3 are in H.P, that is Harmonic Progression.
Now let us consider the property,
If a sequence of numbers a1,a2,.....,an{{a}_{1}},{{a}_{2}},.....,{{a}_{n}} are in H.P then the sequence 1a1,1a2,1a3,.......,1an\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.......,\dfrac{1}{{{a}_{n}}} are in A.P.
So, by using this property, we get that 12,1A,1B,1C,13\dfrac{1}{2},\dfrac{1}{A},\dfrac{1}{B},\dfrac{1}{C},\dfrac{1}{3} are in A.P. So, the terms are
a1=12 a2=1A a3=1B a4=1C a5=13 \begin{aligned} & \Rightarrow {{a}_{1}}=\dfrac{1}{2} \\\ & \Rightarrow {{a}_{2}}=\dfrac{1}{A} \\\ & \Rightarrow {{a}_{3}}=\dfrac{1}{B} \\\ & \Rightarrow {{a}_{4}}=\dfrac{1}{C} \\\ & \Rightarrow {{a}_{5}}=\dfrac{1}{3} \\\ \end{aligned}
As they are in A.P and we can see that the first term is 12\dfrac{1}{2}, let us assume that the common difference is dd.
So, now let us consider the formula for the nth{{n}^{th}} term of A.P with the first term a and common difference d,
an=a+(n1)d{{a}_{n}}=a+\left( n-1 \right)d
As we have that 13\dfrac{1}{3} is the fifth term, using the above formula we have,
12+(51)d=13 4d=1312 4d=16 d=124 \begin{aligned} & \Rightarrow \dfrac{1}{2}+\left( 5-1 \right)d=\dfrac{1}{3} \\\ & \Rightarrow 4d=\dfrac{1}{3}-\dfrac{1}{2} \\\ & \Rightarrow 4d=\dfrac{-1}{6} \\\ & \Rightarrow d=\dfrac{-1}{24} \\\ \end{aligned}
Now as we have the value of dd, we can find the second, third and fourth terms using the formula for the nth{{n}^{th}} term of A.P and thereby find the values of A.
1A=12+(21)(124) 1A=12+124 1A=1124 A=2411...............(1) \begin{aligned} & \Rightarrow \dfrac{1}{A}=\dfrac{1}{2}+\left( 2-1 \right)\left( \dfrac{-1}{24} \right) \\\ & \Rightarrow \dfrac{1}{A}=\dfrac{1}{2}+\dfrac{-1}{24} \\\ & \Rightarrow \dfrac{1}{A}=\dfrac{11}{24} \\\ & \Rightarrow A=\dfrac{24}{11}...............\left( 1 \right) \\\ \end{aligned}
Now consider the third term,
1B=12+(31)(124) 1B=12+(2×124) 1B=12112 1B=512 B=125...............(2) \begin{aligned} & \Rightarrow \dfrac{1}{B}=\dfrac{1}{2}+\left( 3-1 \right)\left( \dfrac{-1}{24} \right) \\\ & \Rightarrow \dfrac{1}{B}=\dfrac{1}{2}+\left( 2\times \dfrac{-1}{24} \right) \\\ & \Rightarrow \dfrac{1}{B}=\dfrac{1}{2}-\dfrac{1}{12} \\\ & \Rightarrow \dfrac{1}{B}=\dfrac{5}{12} \\\ & \Rightarrow B=\dfrac{12}{5}...............\left( 2 \right) \\\ \end{aligned}
Now, consider the fourth term,
1C=12+(41)(124) 1C=12+(3×124) 1C=1218 1C=38 C=83...............(3) \begin{aligned} & \Rightarrow \dfrac{1}{C}=\dfrac{1}{2}+\left( 4-1 \right)\left( \dfrac{-1}{24} \right) \\\ & \Rightarrow \dfrac{1}{C}=\dfrac{1}{2}+\left( 3\times \dfrac{-1}{24} \right) \\\ & \Rightarrow \dfrac{1}{C}=\dfrac{1}{2}-\dfrac{1}{8} \\\ & \Rightarrow \dfrac{1}{C}=\dfrac{3}{8} \\\ & \Rightarrow C=\dfrac{8}{3}...............\left( 3 \right) \\\ \end{aligned}

So, we get the values of A, B, C as 2411,125,83\dfrac{24}{11},\dfrac{12}{5},\dfrac{8}{3}.
So, the three harmonic means between 2 and 3 are 2411,125,83\dfrac{24}{11},\dfrac{12}{5},\dfrac{8}{3}.
Hence answer is 2411,125,83\dfrac{24}{11},\dfrac{12}{5},\dfrac{8}{3}.

Note:
We can also solve this question in an alternative easier method.
First let us consider the formula,
Harmonic mean of two numbers a and b is 2aba+b\dfrac{2ab}{a+b}
So, first let us insert 1 harmonic mean between them, that is
2(2)(3)2+3=125\Rightarrow \dfrac{2\left( 2 \right)\left( 3 \right)}{2+3}=\dfrac{12}{5}
So, our sequence becomes 2,125,32,\dfrac{12}{5},3.
Now, let us find the harmonic mean between 2 and 125\dfrac{12}{5}.
2(2)(125)2+125=485225=4822=2411\Rightarrow \dfrac{2\left( 2 \right)\left( \dfrac{12}{5} \right)}{2+\dfrac{12}{5}}=\dfrac{\dfrac{48}{5}}{\dfrac{22}{5}}=\dfrac{48}{22}=\dfrac{24}{11}
Now let us find the harmonic mean between 125\dfrac{12}{5} and 3.
2(125)(3)125+3=725275=7227=83\Rightarrow \dfrac{2\left( \dfrac{12}{5} \right)\left( 3 \right)}{\dfrac{12}{5}+3}=\dfrac{\dfrac{72}{5}}{\dfrac{27}{5}}=\dfrac{72}{27}=\dfrac{8}{3}
So, we the sequence as 2,2411,125,83,32,\dfrac{24}{11},\dfrac{12}{5},\dfrac{8}{3},3.
Hence answer is 2411,125,83\dfrac{24}{11},\dfrac{12}{5},\dfrac{8}{3}.