Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

Initial angular velocity of a circular disc of mass MM is ω1\omega_{1}. Then two small spheres of mass mm are attached gently to two diametrically opposite points on the edge of the disc. What is the final angular velocity of the disc?

A

(M+mM)ω1\left(\frac{M+m}{M}\right) \omega_{1}

B

(M+mm)ω1\left(\frac{M+m}{m}\right) \omega_{1}

C

(MM+4m)ω1\left(\frac{M}{M+4 m}\right) \omega_{1}

D

(MM+2m)ω1\left(\frac{M}{M+2 m}\right) \omega_{1}

Answer

(MM+4m)ω1\left(\frac{M}{M+4 m}\right) \omega_{1}

Explanation

Solution

Conservation of angular momentum gives 12MR2ω1=(12MR2+2mR2)ω2\frac{1}{2} M R^{2} \omega_{1}=\left(\frac{1}{2} M R^{2}+2 m R^{2}\right) \omega_{2} 12MR2ω1=12R2(M+4m)ω2\Rightarrow \frac{1}{2} M R^{2} \omega_{1}=\frac{1}{2} R^{2}(M+4 m) \omega_{2} ω2=(MM+4m)ω1\therefore \omega_{2}=\left(\frac{M}{M+4 m}\right) \omega_{1}