Question
Question: In\(\triangle A B C\)if \(\cot A , \cot B , \cot C\) be in A. P., then \(a ^ { 2 } , b ^ { 2 } , c ...
In△ABCif cotA,cotB,cotC be in A. P., then a2,b2,c2 are in.
A
H. P.
B
G. P.
C
A. P.
D
None of these
Answer
A. P.
Explanation
Solution
cotA,cotB and cotCare in A. P.
⇒ cotA+cotC=2cotB ⇒ sinAcosA+sinCcosC=sinB2cosB
⇒ 2bc(ka)b2+c2−a2+2ab(kc)a2+b2−c2=22ac(kb)a2+c2−b2
⇒ a2+c2=2b2 . Hence a2,b2,c2 are in A. P.
Note : Students should remember this question as a fact.