Solveeit Logo

Question

Question: In\(\triangle A B C\)if \(\cot A , \cot B , \cot C\) be in A. P., then \(a ^ { 2 } , b ^ { 2 } , c ...

InABC\triangle A B Cif cotA,cotB,cotC\cot A , \cot B , \cot C be in A. P., then a2,b2,c2a ^ { 2 } , b ^ { 2 } , c ^ { 2 } are in.

A

H. P.

B

G. P.

C

A. P.

D

None of these

Answer

A. P.

Explanation

Solution

cotA,cotB\cot A , \cot B and cotC\cot Care in A. P.

cotA+cotC=2cotB\cot A + \cot C = 2 \cot BcosAsinA+cosCsinC=2cosBsinB\frac { \cos A } { \sin A } + \frac { \cos C } { \sin C } = \frac { 2 \cos B } { \sin B }

b2+c2a22bc(ka)+a2+b2c22ab(kc)=2a2+c2b22ac(kb)\frac { b ^ { 2 } + c ^ { 2 } - a ^ { 2 } } { 2 b c ( k a ) } + \frac { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } } { 2 a b ( k c ) } = 2 \frac { a ^ { 2 } + c ^ { 2 } - b ^ { 2 } } { 2 a c ( k b ) }

a2+c2=2b2a ^ { 2 } + c ^ { 2 } = 2 b ^ { 2 } . Hence a2,b2,c2a ^ { 2 } , b ^ { 2 } , c ^ { 2 } are in A. P.

Note : Students should remember this question as a fact.