Solveeit Logo

Question

Question: If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = ...

If [2132]A[3253]=[1001]\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, then the value of matrix A=A =

Answer

[1110]\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}

Explanation

Solution

Given MAN=IM A N = I, we have A=M1N1A = M^{-1} N^{-1}. Compute inverses:

M1=[2132],N1=[3253].M^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}, \quad N^{-1} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}.

Multiply to get:

A=[1110].A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.