Question
Question: If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = ...
If [2312]A[−352−3]=[1001], then the value of matrix A=

Answer
[1110]
Explanation
Solution
Given
[2312]A[−352−3]=I.Let B=[2312] and C=[−352−3]. Then
BAC=I⟹A=B−1C−1.- Find B−1:
The determinant of B is:
det(B)=(2)(2)−(3)(1)=4−3=1.Hence,
B−1=[2−3−12].- Find C−1:
For C=[−352−3],
det(C)=(−3)(−3)−(5)(2)=9−10=−1.Using the formula for the inverse,
C−1=det(C)1[−3−5−2−3]=−[−3−5−2−3]=[3523].- Calculate A=B−1C−1:
Multiply the matrices:
A11A12A21A22=2⋅3+(−1)⋅5=6−5=1,=2⋅2+(−1)⋅3=4−3=1,=(−3)⋅3+2⋅5=−9+10=1,=(−3)⋅2+2⋅3=−6+6=0.Thus,
A=[1110].