Solveeit Logo

Question

Question: If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = ...

If [2132]A[3253]=[1001]\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, then the value of matrix A=A =

Answer

[1110]\begin{bmatrix}1 & 1\\1 & 0\end{bmatrix}

Explanation

Solution

To find the matrix A, we need to isolate it from the given equation:

[2132]A[3253]=[1001]\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Let P=[2132]P = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} and Q=[3253]Q = \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}. Then the equation can be written as PAQ=IPAQ = I, where II is the identity matrix. To solve for A, we need to find the inverses of P and Q and multiply them appropriately:

A=P1Q1A = P^{-1}Q^{-1}

Step 1: Find P1P^{-1}

The determinant of PP is: det(P)=(2)(2)(1)(3)=43=1det(P) = (2)(2) - (1)(3) = 4 - 3 = 1

Thus, the inverse of PP is: P1=[2132]P^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}

Step 2: Find Q1Q^{-1}

The determinant of QQ is: det(Q)=(3)(3)(2)(5)=910=1det(Q) = (-3)(-3) - (2)(5) = 9 - 10 = -1

Thus, the inverse of QQ is: Q1=11[3253]=[3253]Q^{-1} = \frac{1}{-1} \begin{bmatrix} -3 & -2 \\ -5 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}

Step 3: Compute A=P1Q1A = P^{-1}Q^{-1}

Now, multiply P1P^{-1} and Q1Q^{-1}: A=[2132][3253]A = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}

Calculating the product: A=[(23+(1)5)(22+(1)3)(33+25)(32+23)]=[65439+106+6]=[1110]A = \begin{bmatrix} (2*3 + (-1)*5) & (2*2 + (-1)*3) \\ (-3*3 + 2*5) & (-3*2 + 2*3) \end{bmatrix} = \begin{bmatrix} 6 - 5 & 4 - 3 \\ -9 + 10 & -6 + 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}

Therefore, A=[1110]A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.