Solveeit Logo

Question

Question: \(\infty)f(x) = \log_{3 + x}(x^{2} - 1)\) equals to –...

)f(x)=log3+x(x21)\infty)f(x) = \log_{3 + x}(x^{2} - 1) equals to –

A

(3,1)(1,)( - 3, - 1) \cup (1,\infty)

B

[3,1)[1,)\lbrack - 3, - 1) \cup \lbrack 1,\infty)

C

(3,2)(2,1)(1,)( - 3, - 2) \cup ( - 2, - 1) \cup (1,\infty)

D

[3,2)(2,1)[1,]\lbrack - 3, - 2) \cup ( - 2, - 1) \cup \lbrack 1,\infty\rbrack

Answer

(3,1)(1,)( - 3, - 1) \cup (1,\infty)

Explanation

Solution

limx2\lim _ { x \rightarrow 2 } (4x241x2)\left( \frac { 4 } { x ^ { 2 } - 4 } - \frac { 1 } { x - 2 } \right) = limx2\lim _ { x \rightarrow 2 } (4x2x24)\left( \frac { 4 - x - 2 } { x ^ { 2 } - 4 } \right)

=limx2\lim _ { x \rightarrow 2 } (x2)(x+2)(x2)\frac { - ( x - 2 ) } { ( x + 2 ) ( x - 2 ) } = 14\frac { - 1 } { 4 }