Solveeit Logo

Question

Question: If \(g(x) = \lim_{m\to\infty} \frac{x^m f(1)+h(x)+1}{2x^m+3x+3} (m \in N)\) is continuous at x = 1 a...

If g(x)=limmxmf(1)+h(x)+12xm+3x+3(mN)g(x) = \lim_{m\to\infty} \frac{x^m f(1)+h(x)+1}{2x^m+3x+3} (m \in N) is continuous at x = 1 and g(1)=limx1{ln(ex)}2lnxg(1) = \lim_{x\to 1} \{\ln (ex)\}^{\frac{2}{\ln x}} then the value of 2g(1)+2f(1)h(1)2g(1) + 2f(1) - h(1) assume that f(x)f(x) and h(x)h(x) are continuous at x=1x = 1

Answer

1

Explanation

Solution

For x>1x > 1, g(x)=f(1)2g(x) = \frac{f(1)}{2}. Thus, limx1+g(x)=f(1)2\lim_{x\to 1^+} g(x) = \frac{f(1)}{2}. For 0x<10 \le x < 1, g(x)=h(x)+13x+3g(x) = \frac{h(x)+1}{3x+3}. Since h(x)h(x) is continuous at x=1x=1, limx1g(x)=h(1)+13(1)+3=h(1)+16\lim_{x\to 1^-} g(x) = \frac{h(1)+1}{3(1)+3} = \frac{h(1)+1}{6}. Since g(x)g(x) is continuous at x=1x=1, f(1)2=h(1)+16=g(1)\frac{f(1)}{2} = \frac{h(1)+1}{6} = g(1). This gives f(1)=2g(1)f(1) = 2g(1) and h(1)=6g(1)1h(1) = 6g(1) - 1.

To find g(1)g(1), let y={ln(ex)}2lnxy = \{\ln (ex)\}^{\frac{2}{\ln x}}. lny=2lnxln(ln(ex))\ln y = \frac{2}{\ln x} \ln(\ln(ex)). Using L'Hopital's Rule: limx1lny=limx121ln(ex)1x1x=limx12ln(ex)=2ln(e)=2\lim_{x\to 1} \ln y = \lim_{x\to 1} \frac{2 \cdot \frac{1}{\ln(ex)} \cdot \frac{1}{x}}{\frac{1}{x}} = \lim_{x\to 1} \frac{2}{\ln(ex)} = \frac{2}{\ln(e)} = 2. So, g(1)=e2g(1) = e^2.

The expression to evaluate is 2g(1)+2f(1)h(1)2g(1) + 2f(1) - h(1). Substituting the relations: 2g(1)+2(2g(1))(6g(1)1)=2g(1)+4g(1)6g(1)+1=12g(1) + 2(2g(1)) - (6g(1) - 1) = 2g(1) + 4g(1) - 6g(1) + 1 = 1.