Solveeit Logo

Question

Physics Question on Newtons law of gravitation

Infinite number of masses, each 1kg1 \,kg are placed along the xx- axis at x=±1m,±2m,±4m,±8m,±16m,x=\pm 1 m, \pm 2 m, \pm 4 m, \pm 8 m, \pm 16 \,m, \ldots the magnitude of the resultant gravitational potential in terms of gravitational constant GG at the origin (x=0)(x=0) is

A

G/2

B

G

C

-2G

D

4G

Answer

4G

Explanation

Solution

Given each mass =1kg= 1\,kg
and are placed in the following way
we know that V=GMrV = \frac{GM}{r}
where m=m = mass , r=r = distance from origin
Now applying formula.
gravitational potential : 2(G×11G×12)2\left(-\frac{G \times 1}{1}-\frac{G \times 1}{2} \cdots\right)
=2[G×11+G×12+G×14+]=2\left[\frac{G \times 1}{1}+\frac{G \times 1}{2}+\frac{G \times 1}{4}+\cdots\right]
=2G[1+12+122+123+]=-2 G\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots\right]
=2G[1112]=-2 G\left[\frac{1}{1-\frac{1}{2}}\right]
=2G(2)=4G=-2 G(2)=-4 G
in \infty G.P
S=a1rS_{\infty}=\frac{a}{1-r}