Solveeit Logo

Question

Physics Question on Electric Charge

Infinite charges of magnitude qq each are lying at x=1,2,4,8,...x=1,2,4,8,... metre on XX-axis. The value of intensity of electric field at point x=0x=0 due to these charges will be

A

12×109qN/C12\times 10^{9}q\,N/C

B

zero

C

6×109qN/C6\times 10^{9}q\,N/C

D

4×109qN/C 4\times 10^{9}q\,N/C

Answer

12×109qN/C12\times 10^{9}q\,N/C

Explanation

Solution

If there are nn point charges q1,q2,qnq_{1},\, q_{2}, \ldots \ldots q_{n}, then each of them will produce the same intensity at any point which it would have produced in the absence of other point charges.
Hence, total intensity will be vector sum of E1,E2,En\vec{E_{1}}, \vec{E_{2}} \ldots, \vec{E_{n}} produced at a point.
ΣE=q4πε0r12+q4πε0r22+..+q4πε0rn2\Sigma E=\frac{q}{4 \pi \varepsilon_{0} r_{1}^{2}}+\frac{q}{4 \pi \varepsilon_{0} r_{2}^{2}}+\ldots . .+\frac{q}{4 \pi \varepsilon_{0} r_{n}^{2}}
E=q4πε0[112+122+142+182+..]\therefore \vec{E}=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{8^{2}}+\ldots . .\right]
The given series is a geometric progression.
Hence, sum (S)=a1r(S)=\frac{a}{1-r} where a is first term of series and rr the common difference.
r=14,a=1r=\frac{1}{4},\, a=1
S=1114=43\therefore S=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
\therefore Total intensity =q×44πε0×3=9×109×4q3=\frac{q \times 4}{4 \pi \varepsilon_{0} \times 3}=\frac{9 \times 10^{9} \times 4 q}{3}
=12×109qN/C=12 \times 10^{9} q N / C