Solveeit Logo

Question

Question: Infinite charges are lying at *x* = 1, 2, 4, 8…*meter* on *X*-axis and the value of each charge is *...

Infinite charges are lying at x = 1, 2, 4, 8…meter on X-axis and the value of each charge is Q. The value of intensity of electric field and potential at point x = 0 due to these charges will be respectively

A

12×109Q12 \times 10^{9}QN/C, 1.8 × 104

B

Zero, 1.2 × 104V

C

6×109Q6 \times 10^{9}QN/C, 9 × 103V

D

4×109Q4 \times 10^{9}QN/*C,*6 × 103V

Answer

12×109Q12 \times 10^{9}QN/C, 1.8 × 104

Explanation

Solution

By the superposition, Net electric field at origin

E=kQ[112+122+142+182+...]E=kQ[1+14+116+164+...]E = kQ\left\lbrack \frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{4^{2}} + \frac{1}{8^{2}} + ...\infty \right\rbrack E = kQ\left\lbrack 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...\infty \right\rbrack

1+14+116+164+...1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...\infty is an infinite geometrical progression it’s sum can be obtained by using the formula S=a1rS_{\infty} = \frac{a}{1 - r} ; Where a = First term, r = Common ratio.

Here a=1a = 1 and r=14r = \frac{1}{4} so,

1+14+116+164+.....=111/4=431 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + .....\infty = \frac{1}{1 - 1/4} = \frac{4}{3}.

Hence E=9×109×Q×43=12×109QN/CE = 9 \times 10^{9} \times Q \times \frac{4}{3} = 12 \times 10^{9}QN ⥂ / ⥂ CElectric

potential at origin

V=14πε0[1×1061+1×1062+1×1064+1×1068+.......]=9×109×106[1+12+14+18+............]=9×103[1112]=1.8×104voltV = \frac{1}{4\pi\varepsilon_{0}}\left\lbrack \frac{1 \times 10^{- 6}}{1} + \frac{1 \times 10^{- 6}}{2} + \frac{1 \times 10^{- 6}}{4} + \frac{1 \times 10^{- 6}}{8} + .......\infty \right\rbrack = 9 \times 10^{9} \times 10^{- 6}\left\lbrack 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ............\infty \right\rbrack = 9 \times 10^{3}\left\lbrack \frac{1}{1 - \frac{1}{2}} \right\rbrack = 1.8 \times 10^{4}volt

(

Note : In the arrangement shown in figure +Q and – Q are alternatively and equally spaced from each other, the net potential at the origin O is V=14πε0Qloge2xV = \frac { 1 } { 4 \pi \varepsilon _ { 0 } } \cdot \frac { Q \log _ { e } 2 } { x }