Solveeit Logo

Question

Question: Infinite charge sheet in xy plane of surface charge density \(\sigma\) and infinite long wire of lin...

Infinite charge sheet in xy plane of surface charge density σ\sigma and infinite long wire of linear charge density λ\lambda placed at (0,0,4)(0,0,4) and σ=2λ\sigma=2 \lambda. Then net electric field (0,0,2)(0,0,2).

A

Q=4σπr02Q=4\sigma \pi r^2_0

B

r0=λ2πσr _{0}=\frac{\lambda}{2 \pi \sigma}

C

E1(r0/2)=2E2(r0/2)E _{1}\left( r _{0} / 2\right)=2 E _{2}\left( r _{0} / 2\right)

D

E2(r0/2)=4E3(r0/2)E _{2}\left( r _{0} / 2\right)=4 E _{3}\left( r _{0} / 2\right)

Answer

E1(r0/2)=2E2(r0/2)E _{1}\left( r _{0} / 2\right)=2 E _{2}\left( r _{0} / 2\right)

Explanation

Solution

Q4πε0r02=λ2πε0I0=σ2ε0\frac{ Q }{4 \pi \varepsilon_{0} r _{0}^{2}}=\frac{\lambda}{2 \pi \varepsilon_{0} I _{0}}=\frac{\sigma}{2 \varepsilon_{0}}
E1(r02)=Qπε0I02,E _{1}\left(\frac{ r _{0}}{2}\right)=\frac{ Q }{\pi \varepsilon_{0} I _{0}^{2}},
E2(r02)=λπε0I0,E _{2}\left(\frac{ r _{0}}{2}\right)=\frac{\lambda}{\pi \varepsilon_{0} I _{0}},
E3(r02)=σ2ε0E _{3}\left(\frac{ r _{0}}{2}\right)=\frac{\sigma}{2 \varepsilon_{0}}
E1(r02)\therefore E _{1}\left(\frac{ r _{0}}{2}\right)
=2E2(r02)=2 E _{2}\left(\frac{ r _{0}}{2}\right)