Solveeit Logo

Question

Question: In Young's double slit experiment using monochromatic light of wavelength '$\lambda$', the maximum i...

In Young's double slit experiment using monochromatic light of wavelength 'λ\lambda', the maximum intensity of light at a point on the screen is 'K' units. The intensity of light at a point where the path difference is λ6\frac{\lambda}{6} is (cos60=sin30=0.5,sin60=cos30=3/2)(cos 60^\circ = sin 30^\circ = 0.5, sin 60^\circ = cos 30^\circ = \sqrt{3}/2)

A

3K4\frac{3K}{4}

B

K4\frac{K}{4}

C

K2\frac{K}{2}

D

K

Answer

3K4\frac{3K}{4}

Explanation

Solution

  1. The phase difference corresponding to a path difference of λ/6\lambda/6 is:

    ϕ=2πλλ6=π3.\phi = \frac{2\pi}{\lambda}\cdot\frac{\lambda}{6} = \frac{\pi}{3}.
  2. The intensity in Young's double slit experiment is given by:

    I=Imaxcos2(ϕ2).I = I_{\max}\cos^2\left(\frac{\phi}{2}\right).

    For maximum intensity KK, we have Imax=KI_{\max} = K.

  3. Therefore, for ϕ=π3\phi = \frac{\pi}{3}:

    I=Kcos2(π6)=K(32)2=3K4.I = K\cos^2\left(\frac{\pi}{6}\right) = K\left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3K}{4}.