Solveeit Logo

Question

Question: In young’s double slit experiment using monochromatic light of wavelength \(\lambda\), the intensity...

In young’s double slit experiment using monochromatic light of wavelength λ\lambda, the intensity of light at a point on the screen with path difference λ\lambdais M unit . The intensity of light at a point where path difference is λ/3\lambda/3is:

A

M2\frac{M}{2}

B

M4\frac{M}{4}

C

M8\frac{M}{8}

D

M16\frac{M}{16}

Answer

M4\frac{M}{4}

Explanation

Solution

: resulting intensity

IR=I1+I2+2I1I2cosθI_{R} = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}}\cos\theta

If path difference =λ= \lambdaphase difference (rks dykUrj) =2π2\pi

IR=I+I+2I×Icos2π(I1=I2=I)\therefore I_{R} = I + I + 2\sqrt{I \times I}\cos 2\pi(\because I_{1} = I_{2} = I_{})

= 4I = M ……………. (i)

If path difference λ3\frac{\lambda}{3}, phase differenceφ=2π3rad\varphi = \frac{2\pi}{3}rad

IR=I+I+2I×Icos2π3I_{R}^{'} = I_{} + I_{} + 2\sqrt{I_{} \times I_{}}\cos\frac{2\pi}{3}

=2I+2I(12)=I=M4(using(i))= 2I_{} + 2I_{}\left( - \frac{1}{2} \right) = I = \frac{M}{4}(u\sin g(i))