Solveeit Logo

Question

Question: In Young’s double slit experiment , the slit are horizontal. The intensity at a point P as shown in ...

In Young’s double slit experiment , the slit are horizontal. The intensity at a point P as shown in figure is 34\frac{3}{4}where I0I_{0}is the maximum intensity. The value of θ\theta is, (Given the distance between the two slits S1S_{1}and S2S_{2}is 2λ\lambda)

A

cos1(112)\cos^{- 1}\left( \frac{1}{12} \right)

B

sin1(112)\sin^{- 1}\left( \frac{1}{12} \right)

C

tan1(112)\tan^{- 1}\left( \frac{1}{12} \right)

D

sin1(112)\sin^{- 1}\left( \frac{1}{12} \right)

Answer

cos1(112)\cos^{- 1}\left( \frac{1}{12} \right)

Explanation

Solution

: In young’s double slit experiment, intensity at as point is given by

I=Icos2(φ2)I_{} = I_{}\cos^{2}\left( \frac{\varphi}{2} \right)

But II0=34(given)orcos2(φ2)=34\frac{I_{}}{I_{0}} = \frac{3}{4}(given)or\cos^{2}\left( \frac{\varphi}{2} \right) = \frac{3}{4}

Or cosφ2=32orφ=60=π3\cos\frac{\varphi}{2} = \frac{\sqrt{3}}{2}or\varphi = 60{^\circ} = \frac{\pi}{3}

Phase difference , φ=2πλ×\varphi = \frac{2\pi}{\lambda} \timespath difference

From the figure, path difference is

dcosθ=2λcosθd\cos\theta = 2\lambda\cos\theta (d=2λ)(\because d = 2\lambda)

π3=2πλ2λcosθcosθ=112\therefore\frac{\pi}{3} = \frac{2\pi}{\lambda}2\lambda\cos\theta\therefore\cos\theta = \frac{1}{12}

θ=cos1(112)\therefore\theta = \cos^{- 1}{}\left( \frac{1}{12} \right)