Question
Question: In Young’s double slit experiment , one of the slits is wider than the other, so that the amplitude ...
In Young’s double slit experiment , one of the slits is wider than the other, so that the amplitude of the light from one slit is double that from the other slit. If Imbe the maximum intensity, the resultant intensity when they interfere at phase difference φis given by :
A
3Im(1+2cos22φ)
B
5Im(1+4cos22φ)
C
9Im(1+8cos22φ)
D
9Im(8+cos22φ)
Answer
9Im(1+8cos22φ)
Explanation
Solution
: Here A2=2A1
∵Intensity∝(Amplitude2
∴I1I2=(A1A2)2=(A12A1)2=4
I2=4I1
Maximum intensity, Im=(I1+I2)2
Im=(I1+4I1)2=(3I1)2=9I1
Or I1=9Im…… (i)
Resulting intensity
I=I1+I2+2I1I2cosφ
}{= 5I_{1} + 4I_{1}\cos\varphi = I_{1} + 4I_{1} + 4I_{1}\cos\varphi }{= I_{1} + 4I_{1}(1 + \cos\varphi) }{= I_{1} + 8I_{1}\cos^{2}\frac{\varphi}{2}\left( \because 1 + \cos\varphi = 2\cos^{2}\frac{\varphi}{2} \right) }{= I_{1}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)}$$ Putting the value of $I_{1}$from eqn. (i) we get $$I = \frac{I_{m}}{9}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)$$