Solveeit Logo

Question

Question: In Young’s double slit experiment , one of the slits is wider than the other, so that the amplitude ...

In Young’s double slit experiment , one of the slits is wider than the other, so that the amplitude of the light from one slit is double that from the other slit. If ImI_{m}be the maximum intensity, the resultant intensity when they interfere at phase difference φ\varphiis given by :

A

Im3(1+2cos2φ2)\frac{I_{m}}{3}\left( 1 + 2\cos^{2}\frac{\varphi}{2} \right)

B

Im5(1+4cos2φ2)\frac{I_{m}}{5}\left( 1 + 4\cos^{2}\frac{\varphi}{2} \right)

C

Im9(1+8cos2φ2)\frac{I_{m}}{9}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)

D

Im9(8+cos2φ2)\frac{I_{m}}{9}\left( 8 + \cos^{2}\frac{\varphi}{2} \right)

Answer

Im9(1+8cos2φ2)\frac{I_{m}}{9}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)

Explanation

Solution

: Here A2=2A1A_{2} = 2A_{1}

Intensity(Amplitude2\because Intensity \propto (Amplitude^{2}

I2I1=(A2A1)2=(2A1A1)2=4\therefore\frac{I_{2}}{I_{1}} = \left( \frac{A_{2}}{A_{1}} \right)^{2} = \left( \frac{2A_{1}}{A_{1}} \right)^{2} = 4

I2=4I1I_{2} = 4I_{1}

Maximum intensity, Im=(I1+I2)2I_{m} = \left( \sqrt{I_{1}} + \sqrt{I_{2}} \right)^{2}

Im=(I1+4I1)2=(3I1)2=9I1I_{m} = \left( \sqrt{I_{1}} + \sqrt{4I_{1}} \right)^{2} = \left( 3\sqrt{I_{1}} \right)^{2} = 9I_{1}

Or I1=Im9I_{1} = \frac{I_{m}}{9}…… (i)

Resulting intensity

I=I1+I2+2I1I2cosφI = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}}\cos\varphi

}{= 5I_{1} + 4I_{1}\cos\varphi = I_{1} + 4I_{1} + 4I_{1}\cos\varphi }{= I_{1} + 4I_{1}(1 + \cos\varphi) }{= I_{1} + 8I_{1}\cos^{2}\frac{\varphi}{2}\left( \because 1 + \cos\varphi = 2\cos^{2}\frac{\varphi}{2} \right) }{= I_{1}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)}$$ Putting the value of $I_{1}$from eqn. (i) we get $$I = \frac{I_{m}}{9}\left( 1 + 8\cos^{2}\frac{\varphi}{2} \right)$$