Solveeit Logo

Question

Physics Question on Youngs double slit experiment

In Young’s double slit experiment, light from two identical sources is superimposing on a screen. The path difference between the two lights reaching a point on the screen is 7λ4\frac{7\lambda}{4}. The ratio of the intensity of the fringe at this point with respect to the maximum intensity of the fringe is:

A

12\frac{1}{2}

B

34\frac{3}{4}

C

13\frac{1}{3}

D

14\frac{1}{4}

Answer

12\frac{1}{2}

Explanation

Solution

Given:
- Path difference Δx=7λ4\Delta x = \frac{7\lambda}{4}.

Step 1. Calculate the phase difference ϕ\phi:

ϕ=2πλΔx=2πλ×7λ4=7π2\phi = \frac{2\pi}{\lambda} \Delta x = \frac{2\pi}{\lambda} \times \frac{7\lambda}{4} = \frac{7\pi}{2}

Step 2. Determine the intensity at this point:
The intensity II at a point with phase difference ϕ\phi is given by:

I=Imaxcos2(ϕ2)I = I_{\text{max}} \cos^2 \left(\frac{\phi}{2}\right)
Step 3. Calculate IImax\frac{I}{I_{\text{max}}}:

IImax=cos2(ϕ2)=cos2(7π4)\frac{I}{I_{\text{max}}} = \cos^2 \left(\frac{\phi}{2}\right) = \cos^2 \left(\frac{7\pi}{4}\right)

Using cos7π4=cos(2ππ4)=cosπ4\cos \frac{7\pi}{4} = \cos \left(2\pi - \frac{\pi}{4}\right) = \cos \frac{\pi}{4}, we get:

IImax=cos2π4=(12)2=12\frac{I}{I_{\text{max}}} = \cos^2 \frac{\pi}{4} = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}

Thus, the ratio of intensity at this point to the maximum intensity is .12\frac{1}{2}

The Correct Answer is: 12\frac{1}{2}