Solveeit Logo

Question

Physics Question on Wave optics

In Young's double'sIit experiment, Let β\beta be the fringe width and I0I_0 be the intensity at the central bright fringe. At a distance 'x' from the central bright fringe, the intensity will be.

A

I0cos(xβ)I_0\,\cos\left(\frac{x}{\beta}\right)

B

I0cos2(xβ)I_0\,\cos^2\left(\frac{x}{\beta}\right)

C

I0cos2(πxβ)I_0\,\cos^2\left(\frac{\pi\,x}{\beta}\right)

D

I04cos2(πxβ)K3\frac{I_0}{4}\,\cos^2\left(\frac{\pi\,x}{\beta}\right)K-3

Answer

I0cos2(πxβ)I_0\,\cos^2\left(\frac{\pi\,x}{\beta}\right)

Explanation

Solution

Δ=xdD\Delta=x \frac{d}{D} \therefore phase difference =ϕ=2πλΔ=\phi=\frac{2 \pi}{\lambda} \Delta Let a=a = amplitude at the screen due to each slit. I0=k(2a)2=4ka2\therefore I _{0}= k (2 a )^{2}=4 ka ^{2}, where kk is a constant. For phase difference ϕ\phi, amplitude =A=2acos(ϕ/2)= A =2 a \cos(\phi / 2). Intensity, I =kA2=k(4a2)cos(ϕ/2)=I0cos2(πλΔ)= k A ^{2}= k \left(4 a ^{2}\right) \cos (\phi / 2)= I _{0} \cos ^{2}\left(\frac{\pi}{\lambda} \Delta\right) I0cos2(πλxdD)=I0cos2(πxβ)I _{0} \cos ^{2}\left(\frac{\pi}{\lambda} \cdot \frac{ xd }{ D }\right)= I _{0} \cos ^{2}\left(\frac{\pi x }{\beta}\right)