Solveeit Logo

Question

Question: In YDSE slits are at distance of $4\lambda$ (where $\lambda$ is wavelength of monochromatic light). ...

In YDSE slits are at distance of 4λ4\lambda (where λ\lambda is wavelength of monochromatic light). If seperation between slits and screen is DD then (D>>λD >> \lambda)

A

Total minimas observed on screen are 9

B

Total maximas observed on screen are 10

C

Distance of 3rd3^{rd} maxima from central bright fringe is 2D7\frac{2D}{\sqrt{7}}

D

Distance between first and second maxima (on same side of central maxima) is D15(51)\frac{D}{\sqrt{15}}(\sqrt{5}-1)

Answer

D

Explanation

Solution

The condition for maxima in YDSE is dsinθ=nλd \sin \theta = n\lambda. Given d=4λd = 4\lambda, we have sinθ=nλ4λ=n4\sin \theta = \frac{n\lambda}{4\lambda} = \frac{n}{4}. For observation on the screen, sinθ1|\sin \theta| \le 1, so n4|n| \le 4. Thus, nn can take values 0,±1,±2,±3,±40, \pm 1, \pm 2, \pm 3, \pm 4, giving a total of 1+2×4=91 + 2 \times 4 = 9 maxima.

The condition for minima is dsinθ=(2m+1)λ2d \sin \theta = (2m+1)\frac{\lambda}{2}. So, sinθ=(2m+1)λ2(4λ)=2m+18\sin \theta = \frac{(2m+1)\lambda}{2(4\lambda)} = \frac{2m+1}{8}. For observation on the screen, sinθ1|\sin \theta| \le 1, so 2m+18|2m+1| \le 8, which means 82m+18-8 \le 2m+1 \le 8. This gives 92m7-9 \le 2m \le 7, or 4.5m3.5-4.5 \le m \le 3.5. Thus, mm can take values 4,3,2,1,0,1,2,3-4, -3, -2, -1, 0, 1, 2, 3, giving a total of 88 minima.

The position of the nn-th maxima is yn=Dtanθny_n = D \tan \theta_n. Using sinθn=nλd\sin \theta_n = \frac{n\lambda}{d} and tanθn=sinθn1sin2θn\tan \theta_n = \frac{\sin \theta_n}{\sqrt{1-\sin^2 \theta_n}}, we get yn=Dnλ/d1(nλ/d)2y_n = D \frac{n\lambda/d}{\sqrt{1-(n\lambda/d)^2}}.

For the 3rd3^{rd} maxima (n=3n=3), y3=D3λ/(4λ)1(3λ/4λ)2=D3/419/16=D3/47/16=D3/47/4=3D7y_3 = D \frac{3\lambda/(4\lambda)}{\sqrt{1-(3\lambda/4\lambda)^2}} = D \frac{3/4}{\sqrt{1-9/16}} = D \frac{3/4}{\sqrt{7/16}} = D \frac{3/4}{\sqrt{7}/4} = \frac{3D}{\sqrt{7}}. Option C is incorrect.

For the 1st1^{st} maxima (n=1n=1), y1=D1λ/(4λ)1(1λ/4λ)2=D1/411/16=D1/415/16=D1/415/4=D15y_1 = D \frac{1\lambda/(4\lambda)}{\sqrt{1-(1\lambda/4\lambda)^2}} = D \frac{1/4}{\sqrt{1-1/16}} = D \frac{1/4}{\sqrt{15/16}} = D \frac{1/4}{\sqrt{15}/4} = \frac{D}{\sqrt{15}}. For the 2nd2^{nd} maxima (n=2n=2), y2=D2λ/(4λ)1(2λ/4λ)2=D1/211/4=D1/23/4=D1/23/2=D3y_2 = D \frac{2\lambda/(4\lambda)}{\sqrt{1-(2\lambda/4\lambda)^2}} = D \frac{1/2}{\sqrt{1-1/4}} = D \frac{1/2}{\sqrt{3/4}} = D \frac{1/2}{\sqrt{3}/2} = \frac{D}{\sqrt{3}}. The distance between the first and second maxima is y2y1=D3D15=D(5115)=D15(51)y_2 - y_1 = \frac{D}{\sqrt{3}} - \frac{D}{\sqrt{15}} = D \left(\frac{\sqrt{5}-1}{\sqrt{15}}\right) = \frac{D}{\sqrt{15}}(\sqrt{5}-1). Option D is correct.