Question
Question: In \(x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4(y>0)\) , then \(\dfrac{dy}{dx}at\text{ }x=e\) is equal to: ...
In xln(lnx)−x2+y2=4(y>0) , then dxdyat x=e is equal to:
A. 4+e2e
B. 24+e21+2e
C. 24+e22e−1
D. 4+e21+2e
Solution
The required expression can be obtained by simply differentiating the given equation; xln(lnx)−x2+y2=4 with respect to x implicitly i.e. dependent variable appears in the derivative and wise substitution of values at different steps of solution.
Complete step by step answer:
Given equation xln(lnx)−x2+y2=4 can be differentiated with respect to x implicitly.
xln(lnx)−x2+y2=4…eq(1)
On rearranging eq(1)we get,
y2=x2−xln(lnx)+4…eq(2)
We know differentiate on both side with respect to x. Differentiating above equation need following important formula:
dxd(xn)=nxn−1, dxd(f(x).g(x))=f′(x)g(x)+f(x)g′(x), dxd(f(g(x))=f′(g(x))g′(x), dxd(xln(ln(x)))=ln(ln(x))+ln(x)1, dxd(c)=0
dxd(y2)=dxd(x2−xln(ln(x))+4)
dxd(y2)=dxd(x2)−dxd[xln(ln(x))]+dxd(4)
2ydxdy=2x−ln(lnx)−lnx1+0
dxdy=2y1(2x−ln(lnx)−lnx1)…eq(3)
We can obtain the value of y from the original equation xln(lnx)−x2+y2=4by substituting the value of x=e,
eln(ln(e))−e2+y2=4
As we know thatln(ln(e))=1,ln(1)=0 we get following value of y,
y=e2+4
Atx=e, the eq(3)gives,
dxdy=2y1(2e−1)
dxdy=2e2+42e−1at x=e
So, the correct answer is “Option C”.
Note: The implicit differentiation must be done properly. The equation xln(lnx)−x2+y2=4can be implicitly differentiated without rearranging the terms (rearranging is just for simplicity) as given below:
dxd(xln(lnx)−x2+y2)=dxd(4)
lnx1+ln(ln(x))−2x+2ydxdy=0