Solveeit Logo

Question

Question: In which of the following value of \({\rm{log}}\,\dfrac{{{{\rm{K}}_{\rm{p}}}}}{{{{\rm{K}}_{\rm{c}}}}...

In which of the following value of logKpKc+logRT=0{\rm{log}}\,\dfrac{{{{\rm{K}}_{\rm{p}}}}}{{{{\rm{K}}_{\rm{c}}}}}\, + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{0}} is true relationship for which of the following reaction(s)?
A. PCl5PCl3+Cl2{\rm{PC}}{{\rm{l}}_5}\, \rightleftharpoons \,{\rm{PC}}{{\rm{l}}_3}\, + \,{\rm{C}}{{\rm{l}}_2}
B. 2SO2+O22SO3{\rm{2S}}{{\rm{O}}_{\rm{2}}}\, + \,{{\rm{O}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{S}}{{\rm{O}}_3}
C. N2+3H22NH3{{\rm{N}}_{\rm{2}}}\, + \,3\,{{\rm{H}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{N}}{{\rm{H}}_3}
D. Both (B) and (C)

Explanation

Solution

Kp{{\rm{K}}_{\rm{p}}} and Kc{{\rm{K}}_{\rm{c}}} are the equilibrium constants. The Kp{{\rm{K}}_{\rm{p}}} is the product of Kc{{\rm{K}}_{\rm{c}}}, gas constant and temperature raised stoichiometric difference in the power. We will substitute the value of Kp{{\rm{K}}_{\rm{p}}} in the given equation and determine the condition where the equation becomes zero.

Formula used: Kp=KcRTΔn{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,{{\rm{K}}_{\rm{c}}}{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}}

Complete answer:
The relation between equilibrium constant expressed in term of pressure and equilibrium constant expressed in term of concentration is as follows:
Kp=KcRTΔn{{\rm{K}}_{\rm{p}}}\,{\rm{ = }}\,{{\rm{K}}_{\rm{c}}}{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}}
where,
Kp{{\rm{K}}_{\rm{p}}} is the equilibrium constant when the amount of reactant and products are taken in form of pressure.
Kc{{\rm{K}}_{\rm{c}}} is the equilibrium constant when the amount of reactant and products are taken in form of concentrations.
R{\rm{R}} is the gas constant.
T{\rm{T}} is the temperature.
Δn{\rm{\Delta n}} is the difference between the sum of stoichiometric coefficients of products and reactants.
We will substitute value of Kc{{\rm{K}}_{\rm{c}}}in given formula as follows:
logKpKc+logRT=0\Rightarrow {\rm{log}}\,\dfrac{{{{\rm{K}}_{\rm{p}}}}}{{{{\rm{K}}_{\rm{c}}}}}\, + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{0}}
logKcRTΔnKc+logRT=0\Rightarrow {\rm{log}}\,\dfrac{{{{\rm{K}}_{\rm{c}}}{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}}}}{{{{\rm{K}}_{\rm{c}}}}}\, + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{0}}
logRTΔn+logRT=0\Rightarrow {\rm{log}}\,{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}} + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{0}}
Because loga+logb=loga×logb{\rm{log}}\,{\rm{a}} + \,\log {\rm{b}}\,{\rm{ = }}\,{\rm{log}}\,{\rm{a}} \times \,\log {\rm{b}}
So, logRTΔn+logRT=logRTΔn×logRT{\rm{log}}\,{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}} + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{log}}\,{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}} \times \,\log {\rm{RT}}\,
logRTΔn×logRT=0\Rightarrow {\rm{log}}\,{\rm{R}}{{\rm{T}}^{{\rm{\Delta n}}}} \times \,\log {\rm{RT}}\, = 0
logRTΔn+1=0\Rightarrow {\rm{log}}\,{\rm{R}}{{\rm{T}}^{{\rm{\Delta n + 1}}}} = 0
The above equation has two parts, logRT{\rm{log}}\,{\rm{RT}}and Δn+1{\rm{\Delta n + 1}}. Because R is constant so, logRT{\rm{log}}\,{\rm{RT}} cannot be zero, so, Δn+1{\rm{\Delta n + 1}} will be equal to zero.
So, we will determine the reaction for which Δn+1{\rm{\Delta n + 1}}.
The Δn{\rm{\Delta n}} is determined as follows:
Δn=ng(product)ng(reactant){\rm{\Delta n}}\,{\rm{ = }}\,\sum {{{\rm{n}}_{\rm{g}}}{\rm{(product)}}} - \sum {{{\rm{n}}_{\rm{g}}}{\rm{(reactant)}}}

We will determine the Δn+1{\rm{\Delta n + 1}} for each reaction as follows:
A. PCl5PCl3+Cl2{\rm{PC}}{{\rm{l}}_5}\, \rightleftharpoons \,{\rm{PC}}{{\rm{l}}_3}\, + \,{\rm{C}}{{\rm{l}}_2}
Δn+1=(1+1)1+1\Rightarrow {\rm{\Delta n}}\, + 1{\rm{ = }}\,\left( {1 + 1} \right) - 1 + 1
Δn+1=2\Rightarrow {\rm{\Delta n}}\, + 1{\rm{ = }}\,2
B. 2SO2+O22SO3{\rm{2S}}{{\rm{O}}_{\rm{2}}}\, + \,{{\rm{O}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{S}}{{\rm{O}}_3}
Δn+1=2(1+2)+1\Rightarrow {\rm{\Delta n}}\, + 1\,{\rm{ = }}\,2\, - \left( {1 + 2} \right) + 1
Δn+1=0\Rightarrow {\rm{\Delta n}}\, + 1 = \,0
C. N2+3H22NH3{{\rm{N}}_{\rm{2}}}\, + \,3\,{{\rm{H}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{N}}{{\rm{H}}_3}
Δn+1=2(3+1)+1\Rightarrow {\rm{\Delta n}}\, + 1\,{\rm{ = }}\,2\, - \left( {3 + 1} \right) + 1
Δn+1=1\Rightarrow {\rm{\Delta n}}\, + 1{\rm{ = }}\, - 1
The Δn+1=0{\rm{\Delta n}}\, + 1 = \,0 for 2SO2+O22SO3{\rm{2S}}{{\rm{O}}_{\rm{2}}}\, + \,{{\rm{O}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{S}}{{\rm{O}}_3}. So, logKpKc+logRT=0{\rm{log}}\,\dfrac{{{{\rm{K}}_{\rm{p}}}}}{{{{\rm{K}}_{\rm{c}}}}}\, + \,\log {\rm{RT}}\,{\rm{ = }}\,{\rm{0}} is true relationship for 2SO2+O22SO3{\rm{2S}}{{\rm{O}}_{\rm{2}}}\, + \,{{\rm{O}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{S}}{{\rm{O}}_3} reaction.

**Therefore, option (B) 2SO2+O22SO3{\rm{2S}}{{\rm{O}}_{\rm{2}}}\, + \,{{\rm{O}}_2}\, \rightleftharpoons \,{\rm{2}}\,{\rm{S}}{{\rm{O}}_3}, is correct.

Note:**
The stoichiometric difference is determined as the sum of the stoichiometry of all reactants subtracted from the sum of the stoichiometry of all products. According to the relation of Kp{{\rm{K}}_{\rm{p}}} and Kc{{\rm{K}}_{\rm{c}}}, as the value of stoichiometric difference goes from negative to positive, the value of Kc{{\rm{K}}_{\rm{c}}} increases and the value of Kp{{\rm{K}}_{\rm{p}}} decreases. The unit of Kp{{\rm{K}}_{\rm{p}}} is (atm)Δn{\left( {{\rm{atm}}} \right)^{{\rm{\Delta n}}}} and unit of Kc{{\rm{K}}_{\rm{c}}} is (molL1)Δn{\left( {{\rm{mol}}\,\,{{\rm{L}}^{ - 1}}} \right)^{{\rm{\Delta n}}}}. The equilibrium reaction in which all species are in the same phase is known as homogeneous equilibrium. The equilibrium reaction in which all species are in different phases is known as heterogeneous equilibrium.