Solveeit Logo

Question

Question: In which of the following sets the inequality \[\sin^{6}x + \cos^{6}x > \dfrac{5}{8}\] holds good ? ...

In which of the following sets the inequality sin6x+cos6x>58\sin^{6}x + \cos^{6}x > \dfrac{5}{8} holds good ?
A. (π8,π8)\left( - \dfrac{\pi}{8},\dfrac{\pi}{8} \right)
B. (3π8,5π8)\left( \dfrac{3\pi}{8},\dfrac{5\pi}{8} \right)
C. (π4,3π4)\left( \dfrac{\pi}{4},\dfrac{3\pi}{4} \right)
D. (7π8,9π8)\left( \dfrac{7\pi}{8},\dfrac{9\pi}{8} \right)

Explanation

Solution

In this question, we need to find which set holds good for the given inequality. First let us rewrite sin6x+cos6x\sin^{6}x + \cos^{6}x in the form of a3+b3a^{3} + b^{3} , then we can apply the formula of a3+b3=(a+b)33ab(a+b)a^{3} + b^{3} = \left( a + b \right)^{3} – 3ab\left( a + b \right) . Then we can use the trigonometric identity sin2x+cos2x=1\sin^{2}x + \cos^{2}x = 1 , in order to simplify the expression. Then we can use a double angle identity that is 2sin x cos x =sin 2x2\sin\ x\ \cos\ x\ = \sin\ 2x and 12sin2x=cos 2x1 – 2\sin^{2}x = \cos\ 2x to solve the expression further. Finally we can try n=0,1,2n = 0,1,2 . Using this we can find the interval of the given inequality.

Complete step-by-step answer:
Given, sin6x+cos6x>58\sin^{6}x + \cos^{6}x > \dfrac{5}{8}
First let us rewrite the given expression as
 (sin2x)3+(cos2x)3>58\Rightarrow \ \left( \sin^{2}x \right)^{3} + \left( \cos^{2}x \right)^{3} > \dfrac{5}{8}
Since we know that (a)6\left( a \right)^{6} can be written as (a2)3\left( a^{2} \right)^{3} .
Then we can apply (a3)+(b3)\left( a^{3} \right) + \left( b^{3} \right) formula.
That is
(a3)+(b3)=(a+b)33ab(a+b)\left( a^{3} \right) + \left( b^{3} \right) = \left( a + b \right)^{3} – 3ab\left( a + b \right)
Thus we get,
 (sin2x+cos2x)33sin2 x cos2x(sin2x+cos2x)>58\Rightarrow \ \left( \sin^{2}x + cos^{2}x \right)^{3} – 3sin^{2}\ x\ \cos^{2}x\left( \sin^{2}x + \cos^{2}x \right) > \dfrac{5}{8}
Now we know that sin2x+cos2x=1\sin^{2}x + \cos^{2}x = 1
 (1)33sin2 x cos2x×1>58\Rightarrow \ \left( 1 \right)^{3} – 3\sin^{2}\ x\ \cos^{2}x \times 1 > \dfrac{5}{8}
On subtracting both sides by 11 ,
We get,
3sin2 x cos2x>581- 3\sin^{2}\ x\ \cos^{2}x > \dfrac{5}{8} – 1
On taking LCM,
We get,
3sin2 x cos2x>588- 3\sin^{2}\ x\ \cos^{2}x > \dfrac{5 – 8}{8}
On simplifying,
We get,
3sin2 x cos2x>38- 3\sin^{2}\ x\ \cos^{2}x > - \dfrac{3}{8}
On dividing both sides by 3- 3 ,
We get,
sin2 x cos2x<18\sin^{2}\ x\ \cos^{2}x < \dfrac{1}{8}
On cross multiplying,
We get,
8sin2 xcos2x<18\sin^{2}\ x \cos^{2}x < 1
We also know that 2sin x cos x =sin 2x2\sin\ x\ \cos\ x\ = \sin\ 2x
 2 sin2x<1\Rightarrow \ 2\ \sin^{2}x < 1
On subtracting both sides by 11 ,
We get,
 1+2 sin2x<0\Rightarrow \ - 1 + 2\ \sin^{2}x < 0
On dividing both sides by ()( - ) ,
We get,
12 sin2x>01 – 2\ \sin^{2}x > 0
We know that 12sin2x=cos 2x1 – 2\sin^{2}x = \cos\ 2x
On applying this formula ,
We get,
 cos 4x>0\Rightarrow \ \cos\ 4x > 0
Where
4x(2nππ2, 2nπ+π2)4x \in \left( 2n\pi - \dfrac{\pi}{2},\ 2n\pi + \dfrac{\pi}{2} \right)
On simplifying,
We get,
4x(4nππ2,4nπ+π2)4x \in \left( \dfrac{4n\pi - \pi}{2},\dfrac{4n\pi + \pi}{2} \right)
On dividing by 44 ,
We get,
 x((4nππ2)4,(4nπ+π2)4)\Rightarrow \ x \in \left( \dfrac{\left( \dfrac{4n\pi - \pi}{2} \right)}{4},\dfrac{\left( \dfrac{4n\pi + \pi}{2} \right)}{4} \right)
On simplifying,
We get,
x(4nππ8,4nπ+π8)x \in \left( \dfrac{4n\pi - \pi}{8},\dfrac{4n\pi + \pi}{8} \right)
On taking π\pi common,
We get,
x(π8(4n1),π8(4n+1))x \in \left( \dfrac{\pi}{8}\left( 4n – 1 \right),\dfrac{\pi}{8}\left( 4n + 1 \right) \right)
Now on substituting n=0n = 0 ,
 x(π8(4(0)1),π8(4(0)+1)) \Rightarrow \ x \in \left( \dfrac{\pi}{8}\left( 4\left( 0 \right) – 1 \right),\dfrac{\pi}{8}\left( 4\left( 0 \right) + 1 \right) \right)\
On simplifying,
We get,
 x (π8,π8)\Rightarrow \ x \in \ \left( \dfrac{\pi}{8}, - \dfrac{\pi}{8} \right)
Now we can try n=1n = 1 ,
On substituting n=1n = 1 ,
We get
 x (π8(4(1)1),π8(4(1)+1))\Rightarrow \ x \in \ \left( \dfrac{\pi}{8}\left( 4\left( 1 \right) – 1 \right),\dfrac{\pi}{8}\left( 4\left( 1 \right) + 1 \right) \right)
On simplifying,
We get,
x(π8(3),π8(5))x \in \left( \dfrac{\pi}{8}\left( 3 \right),\dfrac{\pi}{8}\left( 5 \right) \right)
On further simplifying,
We get,
x(3π8,5π8)x \in \left( \dfrac{3\pi}{8},\dfrac{5\pi}{8} \right)
Now let us substitute n=2n = 2 ,
 x (π8(4(2)1),π8(4(2)+1))\Rightarrow \ x \in \ \left( \dfrac{\pi}{8}\left( 4\left( 2 \right) – 1 \right),\dfrac{\pi}{8}\left( 4\left( 2 \right) + 1 \right) \right)
On simplifying,
We get,
x(π8(7),π8(9))x \in \left( \dfrac{\pi}{8}\left( 7 \right),\dfrac{\pi}{8}\left( 9 \right) \right)
On further simplifying,
We get,
x(7π8,7π8)x \in \left( \dfrac{7\pi}{8},\dfrac{7\pi}{8} \right)
Thus we get the inequality sin6x+cos6x>58\sin^{6}x + \cos^{6}x > \dfrac{5}{8} holds good in (π8,π8)\left( \dfrac{\pi}{8}, - \dfrac{\pi}{8} \right) , (3π8,5π8)\left( \dfrac{3\pi}{8},\dfrac{5\pi}{8} \right) and (7π8,7π8)\left( \dfrac{7\pi}{8},\dfrac{7\pi}{8} \right)
Final answer :
The inequality sin6x+cos6x>58\sin^{6}x + \cos^{6}x > \dfrac{5}{8} holds good in (π8,π8)\left( \dfrac{\pi}{8}, - \dfrac{\pi}{8} \right) , (3π8,5π8)\left( \dfrac{3\pi}{8},\dfrac{5\pi}{8} \right) and (7π8,7π8)\left( \dfrac{7\pi}{8},\dfrac{7\pi}{8} \right)

Option A, B and D is the correct answer.

Note: In order to solve these types of questions, we must have a stronger grip over the trigonometric identity and properties . We should also be careful while using the double angle identity in order to solve the expression. We need to note that when we are multiplying or dividing by ()( - ) with the inequality , then the direction of inequality gets reversed because when any negative number is multiplied to the inequality, its direction changes. We should also be careful in converting the term sin6x\sin^{6}x and cos6x\cos^{6}x in the form (a2)3\left( a^{2} \right)^{3} as (sin2x)3\left( \sin^{2}x \right)^{3} and (cos2x)3\left( \cos^{2}x \right)^{3} so that we can easily simplified the given trigonometric expression.