Solveeit Logo

Question

Question: In which of the following cells, $E_{cell}$ = $E_{cell}^{\circ}$ ?...

In which of the following cells, EcellE_{cell} = EcellE_{cell}^{\circ} ?

A

Cu(s) | Cu2+Cu^{2+} (0.01M) || Ag+Ag^{+} (0.1 M) | Ag(s)

B

Pt(H2H_2) | pH = 1 || Zn2+Zn^{2+} (0.1 M) | Zn(s)

C

Pt(H2H_2) | pH = 1 || Zn2+Zn^{2+} (1 M) | Zn (s)

D

Pt(H2H_2) | H+H^{+} (0.01 M) || Zn2+Zn^{2+} (0.01 M) | Zn(s)

Answer

(1)

Explanation

Solution

The relationship between the cell potential (EcellE_{cell}) and the standard cell potential (EcellE_{cell}^{\circ}) is given by the Nernst equation:

Ecell=EcellRTnFlnQE_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q

For Ecell=EcellE_{cell} = E_{cell}^{\circ}, the term RTnFlnQ\frac{RT}{nF} \ln Q must be zero. Since R,T,n,FR, T, n, F are non-zero constants (at a given temperature), this requires lnQ=0\ln Q = 0, which means Q=1Q = 1.

We need to find the cell among the given options where the reaction quotient QQ is equal to 1.

Let's determine the cell reaction and the expression for QQ for each cell, assuming the temperature is 298K298 K and the pressure of gases is 1 atm unless otherwise specified.

(1) Cu(s) | Cu2+Cu^{2+} (0.01M) || Ag+Ag^{+} (0.1 M) | Ag(s)

Anode (oxidation): Cu(s)Cu2+(aq)+2eCu(s) \rightarrow Cu^{2+}(aq) + 2e^-

Cathode (reduction): Ag+(aq)+eAg(s)Ag^{+}(aq) + e^- \rightarrow Ag(s)

To balance the electrons transferred, we multiply the cathode reaction by 2:

2×(Ag+(aq)+eAg(s))    2Ag+(aq)+2e2Ag(s)2 \times (Ag^{+}(aq) + e^- \rightarrow Ag(s)) \implies 2Ag^{+}(aq) + 2e^- \rightarrow 2Ag(s)

Overall reaction: Cu(s)+2Ag+(aq)Cu2+(aq)+2Ag(s)Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)

The reaction quotient QQ is given by:

Q=[Cu2+][Ag+]2Q = \frac{[Cu^{2+}]}{[Ag^{+}]^2}

Given concentrations: [Cu2+]=0.01[Cu^{2+}] = 0.01 M, [Ag+]=0.1[Ag^{+}] = 0.1 M.

Q=0.01(0.1)2=0.010.01=1Q = \frac{0.01}{(0.1)^2} = \frac{0.01}{0.01} = 1.

Since Q=1Q=1, for this cell, Ecell=EcellE_{cell} = E_{cell}^{\circ}.

(2) Pt(H2H_2) | pH = 1 || Zn2+Zn^{2+} (0.1 M) | Zn(s)

The pH of the anode compartment is 1, so [H+]=10pH=101[H^{+}] = 10^{-pH} = 10^{-1} M = 0.1 M.

Anode (oxidation): H2(g)2H+(aq)+2eH_2(g) \rightarrow 2H^{+}(aq) + 2e^-

Cathode (reduction): Zn2+(aq)+2eZn(s)Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)

Overall reaction: H2(g)+Zn2+(aq)2H+(aq)+Zn(s)H_2(g) + Zn^{2+}(aq) \rightarrow 2H^{+}(aq) + Zn(s)

Assuming standard pressure for H2H_2, PH2=1P_{H_2} = 1 atm.

The reaction quotient QQ is given by:

Q=[H+]2PH2[Zn2+]Q = \frac{[H^{+}]^2}{P_{H_2} [Zn^{2+}]}

Given concentrations: [H+]=0.1[H^{+}] = 0.1 M, [Zn2+]=0.1[Zn^{2+}] = 0.1 M. Assuming PH2=1P_{H_2} = 1 atm.

Q=(0.1)2(1)(0.1)=0.010.1=0.1Q = \frac{(0.1)^2}{(1)(0.1)} = \frac{0.01}{0.1} = 0.1.

Since Q1Q \neq 1, EcellEcellE_{cell} \neq E_{cell}^{\circ}.

(3) Pt(H2H_2) | pH = 1 || Zn2+Zn^{2+} (1 M) | Zn (s)

[H+]=10pH=101[H^{+}] = 10^{-pH} = 10^{-1} M = 0.1 M.

Overall reaction: H2(g)+Zn2+(aq)2H+(aq)+Zn(s)H_2(g) + Zn^{2+}(aq) \rightarrow 2H^{+}(aq) + Zn(s)

Assuming standard pressure for H2H_2, PH2=1P_{H_2} = 1 atm.

Q=[H+]2PH2[Zn2+]Q = \frac{[H^{+}]^2}{P_{H_2} [Zn^{2+}]}

Given concentrations: [H+]=0.1[H^{+}] = 0.1 M, [Zn2+]=1[Zn^{2+}] = 1 M. Assuming PH2=1P_{H_2} = 1 atm.

Q=(0.1)2(1)(1)=0.011=0.01Q = \frac{(0.1)^2}{(1)(1)} = \frac{0.01}{1} = 0.01.

Since Q1Q \neq 1, EcellEcellE_{cell} \neq E_{cell}^{\circ}.

(4) Pt(H2H_2) | H+H^{+} (0.01 M) || Zn2+Zn^{2+} (0.01 M) | Zn(s)

Overall reaction: H2(g)+Zn2+(aq)2H+(aq)+Zn(s)H_2(g) + Zn^{2+}(aq) \rightarrow 2H^{+}(aq) + Zn(s)

Assuming standard pressure for H2H_2, PH2=1P_{H_2} = 1 atm.

Q=[H+]2PH2[Zn2+]Q = \frac{[H^{+}]^2}{P_{H_2} [Zn^{2+}]}

Given concentrations: [H+]=0.01[H^{+}] = 0.01 M, [Zn2+]=0.01[Zn^{2+}] = 0.01 M. Assuming PH2=1P_{H_2} = 1 atm.

Q=(0.01)2(1)(0.01)=0.00010.01=0.01Q = \frac{(0.01)^2}{(1)(0.01)} = \frac{0.0001}{0.01} = 0.01.

Since Q1Q \neq 1, EcellEcellE_{cell} \neq E_{cell}^{\circ}.

Only in cell (1) is the reaction quotient Q=1Q=1. Therefore, in cell (1), Ecell=EcellE_{cell} = E_{cell}^{\circ}.