Question
Question: In \[\vartriangle {\text{ABC}}\]\[{\text{a,b,A}}\] are given and \[{{\text{c}}_1}{\text{,}}{{\text{c...
In \vartriangle {\text{ABC}}$$$${\text{a,b,A}} are given and c1,c2 are two values of the third sidec. The sum of the areas of the two triangles with sides a,b,c1 and a,b,c2is
A. (21)b2sin2A
B. (21)a2sin2A
C. b2sin2A
D. None of these
Solution
In this sum we are going to see some trigonometric identities.
We have to find the sum of the areas of the two triangles using trigonometric identities.
We will use the below mentioned identities to get our answer.
{\text{sin2A}}$$$${\text{ = }}$$$${\text{2sinAcosA}}
cosA = 2bcb2 + c2 - a2
sinAa = sinBb
Complete step-by-step answer:
It is given a,b,A and c1,c2 are two values of the third sidec.
From cosine rule,
cosA = 2bcb2 + c2 - a2
By Cross-Multiplying we get that,
\Rightarrow$$${\text{(2bc)(cosA) = }}{{\text{b}}^{\text{2}}}{\text{ + }}{{\text{c}}^{\text{2}}}{\text{ - }}{{\text{a}}^{\text{2}}}$$
Bringing the LHS terms to RHS we get,
\Rightarrow{{\text{c}}^2}{\text{ - 2bc cosA + (}}{{\text{b}}^2}{\text{ - }}{{\text{a}}^2}{\text{) = 0}}$$
Let $${{\text{c}}_1}{\text{,}}{{\text{c}}_2}$$ be the roots of the above equation
Then,
The sum of roots $${\text{ = }}{{\text{c}}_{\text{1}}}{\text{ + }}{{\text{c}}_{\text{2}}}$$$${\text{ = 2b cosA}}$$
Multiplying $${\text{2Rsin}}$$on the above sum of roots, we get that,
$\Rightarrow{\text{2Rsin}}{{\text{C}}{\text{1}}}{\text{ + 2Rsin}}{{\text{C}}{\text{2}}}{\text{ = 2cosA(2RsinB)}}
On LHS, taking out the common term 2R we get,
$\Rightarrow$$${\text{2R(sin}}{{\text{C}}_{\text{1}}}{\text{ + sin}}{{\text{C}}_{\text{2}}}{\text{) = 2cosA (2RsinB)}}
By cancelling 2R we have,
\Rightarrow$$${\text{sin}}{{\text{C}}_{\text{1}}}{\text{ + sin}}{{\text{C}}_{\text{2}}}{\text{ = 2cosA sinB}}$$$$...........................{\text{(1)}}$$
Here, we are using the formula of area of triangle,
Area of triangle = $$\dfrac{{\text{1}}}{{\text{2}}}{{ \times b \times h}}$$
So that,
The sum of area of two triangles is, $$\Delta {\text{ = }}{\Delta _1}{\text{ + }}{\Delta _2}$$
The sum of the areas of the two triangles with sides $${\text{a,b,}}{{\text{c}}_1}$$and $${\text{a,b,}}{{\text{c}}_2}$$ is
\Rightarrow\Delta $$ $${\text{ = }}$$$$\dfrac{{\text{1}}}{{\text{2}}}{\text{ab sin}}{{\text{C}}_{\text{1}}}{\text{ + }}\dfrac{{\text{1}}}{{\text{2}}}{\text{ab sin}}{{\text{C}}_{\text{2}}}$$
Taking out $$\dfrac{{\text{1}}}{{\text{2}}}{\text{ab}}$$ which is the common term, we have
$$\dfrac{{\text{1}}}{{\text{2}}}{\text{ab(sin}}{{\text{C}}_{\text{1}}}{\text{ + sin}}{{\text{C}}_{\text{2}}}{\text{)}}$$
From equation (1) we get,
$${\text{ = }}$$$$\dfrac{{\text{1}}}{{\text{2}}}{\text{ab(2cosAsinB)}}$$
After Cancelling the terms, we get,
$${\text{ = }}$$$${\text{ab cosAsinB}}$$ ……………….. (2)
[Since, we know that the formula,
$$\dfrac{{\text{a}}}{{{\text{sinA}}}}{\text{ = }}\dfrac{{\text{b}}}{{{\text{sinB}}}}$$
After cross multiplying, we get,
$\Rightarrow{\text{asinB = bsinA}}]Substitute{\text{asinB = bsinA}}intheequation(2)wehavethat{\text{ = }}{\text{bsinA(b cosA)}}$$
Here, we are multiplying them. Now we have,
$${\text{ = }}{{\text{b}}^{\text{2}}}{\text{ sinAcosA}}Multiplyinganddividingthemby2,weget,{\text{ = }}\dfrac{{{{\text{b}}^{\text{2}}}{\text{ 2sinAcosA}}}}{2}$$
We know that the formula, $${\text{sin2A}}{\text{ = }}{\text{2sinAcosA}}$$
Substitute above formula on them we get,
$$\Delta {\text{ = }}$$2b2 sin2A
The sum of the areas of the two triangles with sides a,b,c1 and a,b,c2 is \Delta $$$${\text{ = }}$$$$\dfrac{{{{\text{b}}^{\text{2}}}{\text{ sin2A}}}}{2}
Note: In this question we have alternative method as follows:
From cosine rule,
cosA = 2bcb2 + c2 - a2
By Cross-Multiplying we get that,
\Rightarrow$$${\text{(2bc)(cosA) = }}{{\text{b}}^{\text{2}}}{\text{ + }}{{\text{c}}^{\text{2}}}{\text{ - }}{{\text{a}}^{\text{2}}}$$
Bringing the LHS terms to RHS we get,
\Rightarrow{{\text{c}}^2}{\text{ - 2bc cosA + (}}{{\text{b}}^2}{\text{ - }}{{\text{a}}^2}{\text{) = 0}}$$
Let $${{\text{c}}_1}{\text{,}}{{\text{c}}_2}$$ be the roots of the above equation,
The sum of roots $${\text{ = }}{{\text{c}}_{\text{1}}}{\text{ + }}{{\text{c}}_{\text{2}}}$$$${\text{ = 2b cosA}}$$
Now, The sum of area of two triangle, $$\Delta {\text{ = }}{\Delta _1}{\text{ + }}{\Delta _2}$$
$\Rightarrow{\Delta 1}{\text{ = }}\dfrac{{{\text{b}}{{\text{C}}_{\text{1}}}{\text{sinA}}}}{2}$$, $${\Delta _2}{\text{ = }}\dfrac{{{\text{b}}{{\text{C}}_2}{\text{sinA}}}}{2}$$
$$\Delta {\text{ = }}{\Delta _1}{\text{ + }}{\Delta _2}$$
$$\Delta {\text{ = }}\dfrac{{{\text{b}}{{\text{C}}{\text{1}}}{\text{sinA + b}}{{\text{C}}_{\text{2}}}{\text{sinA}}}}{{\text{2}}}
Taking out the common terms in the following,
$\Rightarrow$$$\Delta $$$${\text{ = }}\dfrac{{{\text{b(}}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{)sinA}}}}{{\text{2}}}
We know{{\text{C}}_1}{\text{ + }}{{\text{C}}_2}$$$${\text{ = 2b cosA}} substitute that in the above term,
\Rightarrow$$$\Delta $$$${\text{ = }}\dfrac{{{\text{b(2bcosA)sinA}}}}{{\text{2}}}$$
After cancelling them, we get,
\Rightarrow\Delta $$$${\text{ = }}$$$${{\text{b}}^{\text{2}}}{\text{ sinAcosA}}$$
Multiplying and dividing the above terms by 2, we have that
$\Rightarrow\Delta = \dfrac{{{{\text{b}}^{\text{2}}}{\text{ 2sinAcosA}}}}{2}Wealreadyknowthat{\text{2sinAcosA}}{\text{ = }}$$ $${\text{sin2A}}$$
So, By Substituting those on below we get,
$\Rightarrow$$$\Delta {\text{ = }}\dfrac{{{{\text{b}}^{\text{2}}}{\text{ sin2A}}}}{2}$$
The sum of the areas of the two triangles with sides $${\text{a,b,}}{{\text{c}}_1}$$ and $${\text{a,b,}}{{\text{c}}_2}$$ is $$\Delta {\text{ = }}$$2b2 sin2A