Solveeit Logo

Question

Question: In \(\vartriangle \)PQR, right angled at Q, PR+QR =25 cm and PQ = 5 cm. Determine the values of sinP...

In \vartriangle PQR, right angled at Q, PR+QR =25 cm and PQ = 5 cm. Determine the values of sinP, cosP and tanP.
A. sinP=1113,cosP=413{\text{A}}{\text{. }}\sin {\text{P}} = \dfrac{{11}}{{13}},\cos {\text{P}} = \dfrac{4}{{13}} and tanP=125\tan {\text{P}} = \dfrac{{12}}{5}
B. sinP=1113,cosP=513{\text{B}}{\text{. }}\sin {\text{P}} = \dfrac{{11}}{{13}},\cos {\text{P}} = \dfrac{5}{{13}} and tanP=175\tan {\text{P}} = \dfrac{{17}}{5}
C. sinP=1213,cosP=413{\text{C}}{\text{. }}\sin {\text{P}} = \dfrac{{12}}{{13}},\cos {\text{P}} = \dfrac{4}{{13}} and tanP=175\tan {\text{P}} = \dfrac{{17}}{5}
D.{\text{D}}{\text{.}} None of these

Explanation

Solution

Hint: Here, we will proceed by finding the remaining two sides i.e., QR and PR using the Pythagoras Theorem i.e., (Hypotenuse)2=(Perpendicular)2+(Base)2{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2} and then using the formulas sinθ=PerpendicularHypotenuse\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}, cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} and tanθ=PerpendicularBase\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}.

Complete step-by-step answer:
Given, In right angled \vartriangle PQR, PR + QR =25 cm and PQ = 5 cm
According to Pythagoras Theorem in any right angled triangle, we can write
(Hypotenuse)2=(Perpendicular)2+(Base)2{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}
Using the above formula in right angled triangle PQR, we have
(PR)2=(PQ)2+(QR)2 (PR)2=(5)2+(QR)2 (1)  \Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{QR}}} \right)^2} \\\ \Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{QR}}} \right)^2}{\text{ }} \to {\text{(1)}} \\\
PR + QR = 25
\RightarrowQR = (25 - PR) (2) \to (2)
By substituting equation (2) in equation (1), we get

(PR)2=(5)2+(25PR)2 (PR)2=25+(25)2+(PR)22(25)(PR) (PR)2=25+625+(PR)250(PR) (PR)2(PR)2+50(PR)=650 50(PR)=650 PR=65050=13 cm \Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{25}} - {\text{PR}}} \right)^2} \\\ \Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + {\left( {{\text{25}}} \right)^2} + {\left( {{\text{PR}}} \right)^2} - 2\left( {25} \right)\left( {{\text{PR}}} \right) \\\ \Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + 625 + {\left( {{\text{PR}}} \right)^2} - 50\left( {{\text{PR}}} \right) \\\ \Rightarrow {\left( {{\text{PR}}} \right)^2} - {\left( {{\text{PR}}} \right)^2} + 50\left( {{\text{PR}}} \right) = 650 \\\ \Rightarrow 50\left( {{\text{PR}}} \right) = 650 \\\ \Rightarrow {\text{PR}} = \dfrac{{650}}{{50}} = 13{\text{ cm}} \\\

Put PR = 13 in equation (2), we get
\RightarrowQR = (25 - 13) = 12 cm
According to the definitions of sine, cosine and tangent trigonometric functions in any right angled triangle, we can write
sinθ=PerpendicularHypotenuse\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}, cosθ=BaseHypotenuse\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} and tanθ=PerpendicularBase\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}
In right angled triangle PQR,
sinP=QRPR=1213\sin {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PR}}}} = \dfrac{{12}}{{13}}, cosP=PQPR=513\cos {\text{P}} = \dfrac{{{\text{PQ}}}}{{{\text{PR}}}} = \dfrac{5}{{13}} and tanP=QRPQ=125\tan {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PQ}}}} = \dfrac{{12}}{5}
Therefore, sinP=1213\sin {\text{P}} = \dfrac{{12}}{{13}}, cosP=513\cos {\text{P}} = \dfrac{5}{{13}} and tanP=125\tan {\text{P}} = \dfrac{{12}}{5}
Hence, option D is correct.

Note- In any right angled triangle, the side opposite to the right angle is the hypotenuse, the side opposite to the considered angle is the perpendicular and the remaining side is the base. In this particular problem, side PR is the hypotenuse, side QR is the perpendicular for angle P and side PQ is the base for angle P.