Solveeit Logo

Question

Physics Question on kinetic theory

In van der Waal?? equation the critical pressure PcP_c is given by

A

3b3b

B

a27b2\frac{a}{27 b^2}

C

27ab2\frac{27 a}{b^2}

D

b2a\frac{b^2}{a}

Answer

a27b2\frac{a}{27 b^2}

Explanation

Solution

The van der waal?? equation of state is (P+aV2)(Vb)=RT\left(P + \frac{a}{V^{2}}\right)\left(V -b\right) = RT or P=RTVbaV2P = \frac{RT}{V -b} - \frac{a}{V^{2}} At the critical point, P=Pc,V=VcP = P_{c}, V = V_{c} and T=TcT=T_{c} Pc=RTVcbaVc2 \therefore P_{c} = \frac{RT}{V_{c} - b} - \frac{a}{V_{c}^{2}} ....(i) At the critical point on the isothermal, dPcdVc=0 \frac{dP_{c}}{dV_{c}} = 0 0=RTc(Vcb)2+2aVc3 \therefore 0 = \frac{-RT_{c}}{\left(V_{c} -b\right)^{2}} + \frac{2a}{V_{c}^{3}} or 0=RTc(Vcb)2+2aVc3\therefore 0= \frac{RT_{c}}{\left(V_{c} -b\right)^{2}} + \frac{2a}{V_{c}^{3}} ......(ii) Also at critical point, d2PcdVc2=0\frac{d^{2}P_{c}}{dV^{2}_{c}} = 0 0=2RTc(Vcb)36aVc4\therefore 0 = \frac{2RT_{c}}{\left(V_{c} - b\right)^{3}} - \frac{6a}{V_{c}^{4}} or 2RTc(Vcb)3=6aVc4\frac{2RT_{c}}{\left(V_{c} - b\right)^{3}} = \frac{6a}{V_{c}^{4}} .....(iii) 12(Vcb)=13VcorVc=3b\frac{1}{2} \left(V_{c} - b\right) = \frac{1}{3} V_{c} or V_{c} = 3b ....(iv) Putting this value in (ii), we get RTc4b2=2a27b3orTc=8a27bR \frac{RT_{c}}{4 b^{2}} = \frac{2a}{27b^{3}} or T_{c} = \frac{8a}{27b R} ....(v) Putting the values of VcV_c and TcT_c in (i), we get Pc=R2b(8a27bR)a9b2=a27b2P_{c} = \frac{R}{2b} \left(\frac{8a}{27bR}\right) - \frac{a}{9b^{2}} = \frac{a}{27b^{2}}