Solveeit Logo

Question

Question: In two systems of relations among velocity, acceleration and force are respectively \(v _ { 2 } = \...

In two systems of relations among velocity, acceleration and force are respectively v2=α2βv1v _ { 2 } = \frac { \alpha ^ { 2 } } { \beta } v _ { 1 } a2=αβa1a_{2} = \alpha\beta a_{1} and F2=F1αβ.F_{2} = \frac{F_{1}}{\alpha\beta}. If α\alpha and β\betaare constants then relations among mass, length and time in two systems are

A

M2=αβM1,L2=α2β2L1,T2=α3T1βM_{2} = \frac{\alpha}{\beta}M_{1},L_{2} = \frac{\alpha^{2}}{\beta^{2}}L_{1},T_{2} = \frac{\alpha^{3}T_{1}}{\beta}

B

M2=1α2β2M1,L2=α3β3L1,T2=T1αβ2M_{2} = \frac{1}{\alpha^{2}\beta^{2}}M_{1},L_{2} = \frac{\alpha^{3}}{\beta^{3}}L_{1},T_{2} = T_{1}\frac{\alpha}{\beta^{2}}

C

M2=α3β3M1,L2=α2β2L1,T2=αβT1M_{2} = \frac{\alpha^{3}}{\beta^{3}}M_{1},L_{2} = \frac{\alpha^{2}}{\beta^{2}}L_{1},T_{2} = \frac{\alpha}{\beta}T_{1}

D

M2=α2β2M1,L2=αβ2L1,T2=α3β3T1M_{2} = \frac{\alpha^{2}}{\beta^{2}}M_{1},L_{2} = \frac{\alpha}{\beta^{2}}L_{1},T_{2} = \frac{\alpha^{3}}{\beta^{3}}T_{1}

Answer

M2=1α2β2M1,L2=α3β3L1,T2=T1αβ2M_{2} = \frac{1}{\alpha^{2}\beta^{2}}M_{1},L_{2} = \frac{\alpha^{3}}{\beta^{3}}L_{1},T_{2} = T_{1}\frac{\alpha}{\beta^{2}}

Explanation

Solution

v2=v1α2βv_{2} = v_{1}\frac{\alpha^{2}}{\beta} [L2T21]=[L1T11]α2β\Rightarrow \lbrack L_{2}T_{2}^{- 1}\rbrack = \lbrack L_{1}T_{1}^{- 1}\rbrack\frac{\alpha^{2}}{\beta} ......(i)

a2=a1αβa_{2} = a_{1}\alpha\beta [L2T22]=[L1T12]αβ\Rightarrow \lbrack L_{2}T_{2}^{- 2}\rbrack = \lbrack L_{1}T_{1}^{- 2}\rbrack\alpha\beta ......(ii)

and F2=F1αβF_{2} = \frac{F_{1}}{\alpha\beta} [M2L2T22]=[M1L1T12]×1αβ\Rightarrow \lbrack M_{2}L_{2}T_{2}^{- 2}\rbrack = \lbrack M_{1}L_{1}T_{1}^{- 2}\rbrack \times \frac{1}{\alpha\beta}......(iii)

Dividing equation (iii) by equation (ii) we get

M2=M1(αβ)αβM_{2} = \frac{M_{1}}{(\alpha\beta)\alpha\beta} =M1α2B2= \frac{M_{1}}{\alpha^{2}B^{2}}

Squaring equation (i) and dividing by equation (ii) we get L2=L1α3β3L_{2} = L_{1}\frac{\alpha^{3}}{\beta^{3}}

Dividing equation (i) by equation (ii) we get T2=T1αβ2T_{2} = T_{1}\frac{\alpha}{\beta^{2}}