Solveeit Logo

Question

Question: In triangle PQR, right angled at Q, PQ = 3cm and PR = 6cm. Determine angle P and R....

In triangle PQR, right angled at Q, PQ = 3cm and PR = 6cm. Determine angle P and R.

Explanation

Solution

First we draw the diagram and plot the given information in it and then we will use the fact that the sum of all the angles in a triangle is 180{{180}^{\circ }} , and we will also use the sin formula sinPp=sinQq=sinRr\dfrac{\sin P}{p}=\dfrac{\sin Q}{q}=\dfrac{\sin R}{r} to find the angles P and R.

Complete step-by-step answer:
First of all we will draw a trigonometric standard angles table which is as follows:

Degrees0{{0}^{\circ }}30{{30}^{\circ }}45{{45}^{\circ }}60{{60}^{\circ }}90{{90}^{\circ }}
Radians0π6\dfrac{\pi }{6}π4\dfrac{\pi }{4}π3\dfrac{\pi }{3}π2\dfrac{\pi }{2}
Sine012\dfrac{1}{2}12\dfrac{1}{\sqrt{2}}32\dfrac{\sqrt{3}}{2}1
Cosine132\dfrac{\sqrt{3}}{2}12\dfrac{1}{\sqrt{2}}12\dfrac{1}{2}0
Tangent013\dfrac{1}{\sqrt{3}}13\sqrt{3}Not defined

Let’s start our solution,

In the above figure,
q = PR = 6cm, p = RQ and r = PQ = 3cm
Now we will use the Pythagoras theorem to find the side RQ or p,
The formula is: p2=q2r2{{p}^{2}}={{q}^{2}}-{{r}^{2}}
Now substituting the value of q and r we get,
p2=6232 p=369=33 \begin{aligned} & {{p}^{2}}={{6}^{2}}-{{3}^{2}} \\\ & p=\sqrt{36-9}=3\sqrt{3} \\\ \end{aligned}
Now the sin formula states that sinPp=sinQq=sinRr\dfrac{\sin P}{p}=\dfrac{\sin Q}{q}=\dfrac{\sin R}{r} must be true,
Therefore, using the above formula we get,
sinPp=sinQq\dfrac{\sin P}{p}=\dfrac{\sin Q}{q}
Now substituting the values of p=33p=3\sqrt{3} , Q = 90{{90}^{\circ }} , q = 6 we get,
sinP33=sin906 sinP=32 \begin{aligned} & \dfrac{\sin P}{3\sqrt{3}}=\dfrac{\sin {{90}^{\circ }}}{6} \\\ & \sin P=\dfrac{\sqrt{3}}{2} \\\ \end{aligned}
Hence, P = 60{{60}^{\circ }} .
Now we know that the sum of all the angles in a triangle is 180, using this we get,
P+Q+R=180\angle P+\angle Q+\angle R={{180}^{\circ }}
Now substituting P = 60{{60}^{\circ }} and Q = 90{{90}^{\circ }} we get,
R=1809060=30\angle R={{180}^{\circ }}-{{90}^{\circ }}-{{60}^{\circ }}={{30}^{\circ }}
Hence we have found the value of angle P and R.

Note: The cosine and the sin formula of the triangles are very important and used to solve this type question very easily. One can also use the cosine formula cosP=q2+r2p22qr\cos P=\dfrac{{{q}^{2}}+{{r}^{2}}-{{p}^{2}}}{2qr} , and the substitute all the given values to find the angle P. Hence, all these formulas must be kept in mind.