Solveeit Logo

Question

Question: In triangle \(A B C\) \(( b + c ) \cos A + ( c + a ) \cos B\) \(+ ( a + b ) \cos C =\)....

In triangle ABCA B C

(b+c)cosA+(c+a)cosB( b + c ) \cos A + ( c + a ) \cos B +(a+b)cosC=+ ( a + b ) \cos C =.

A

0

B

1

C

a+b+ca + b + c

D

2(a+b+c)2 ( a + b + c )

Answer

a+b+ca + b + c

Explanation

Solution

(b+c)cosA+(c+a)cosB+(a+b)cosC=a+b+c( b + c ) \cos A + ( c + a ) \cos B + ( a + b ) \cos C = a + b + c

From expanding and collecting terms using projection rule, a=bcosC+ccosBa = b \cos C + c \cos Betc.