Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

In triangle ΔABC\Delta A B C , if b+c9=c+a10=a+b11,\frac{b + c}{9} = \frac{c + a}{10} = \frac{a+b}{11}, then cosA+cosBcosC=\frac{\cos A + \cos B}{\cos C} =

A

910\frac{9}{10}

B

1011\frac{10}{11}

C

1112\frac{11}{12}

D

1213\frac{12}{13}

Answer

1112\frac{11}{12}

Explanation

Solution

Let b+c9=c+a10=a+b11=k\frac{b +c}{9}=\frac{c +a}{10}=\frac{a +b}{11}=k
b+c=9k,c+a=10k\Rightarrow b+ c=9 k, c +a=10 k and a+b=11ka+b=11\, k
and a+b+c=15ka+b+c=15\, k
a=6k,b=5k\therefore a=6 k,\, b=5\, k and c=4kc=4 k
cosA+cosBcosC=b2+c2a22bc+a2+c2b22aca2+b2c22ab\because \frac{\cos A+\cos B}{\cos C}=\frac{\frac{b^{2}+c^{2}-a^{2}}{2 b c}+\frac{a^{2}+c^{2}-b^{2}}{2 a c}}{\frac{a^{2}+b^{2}-c^{2}}{2 a b}}
=25+163640+36+16254836+251660=\frac{\frac{25+16-36}{40}+\frac{36+16-25}{48}}{\frac{36+25-16}{60}}
=540+27484560=\frac{\frac{5}{40}+\frac{27}{48}}{\frac{45}{60}}
=18+91634=111634=1112=\frac{\frac{1}{8}+\frac{9}{16}}{\frac{3}{4}} \frac{=\frac{11}{16}}{\frac{3}{4}}=\frac{11}{12}