Solveeit Logo

Question

Question: In triangle ABC, z = \(\left| \begin{matrix} e^{- 2iA} & e^{+ ic} & e^{iB} \\ e^{iC} & e^{- i2B} & e...

In triangle ABC, z = e2iAe+iceiBeiCei2BeiAeiBeiAei2C\left| \begin{matrix} e^{- 2iA} & e^{+ ic} & e^{iB} \\ e^{iC} & e^{- i2B} & e^{iA} \\ e^{iB} & e^{iA} & e^{- i2C} \end{matrix} \right| where i = 1\sqrt{- 1}. Then arg(z) =

A

0

B

Does not exist

C

p

D

None of these

Answer

p

Explanation

Solution

z = e–2iA(e–2i(B+C) – e2iA) – e+ic(e–ic – ei(A + B))+ eiB(ei(A+C) – e–iB)

z = e–2pi – 1 – 1 + epi + eip – 1 = 1 – 1 – 1 – 1 – 1 – 1 = – 4 Ž arg(z) = 11