Question
Question: In triangle ABC, z = \(\left| \begin{matrix} e^{- 2iA} & e^{+ ic} & e^{iB} \\ e^{iC} & e^{- i2B} & e...
In triangle ABC, z = e−2iAeiCeiBe+ice−i2BeiAeiBeiAe−i2C where i = −1. Then arg(z) =
A
0
B
Does not exist
C
p
D
None of these
Answer
p
Explanation
Solution
z = e–2iA(e–2i(B+C) – e2iA) – e+ic(e–ic – ei(A + B))+ eiB(ei(A+C) – e–iB)
z = e–2pi – 1 – 1 + epi + eip – 1 = 1 – 1 – 1 – 1 – 1 – 1 = – 4 Ž arg(z) = 11