Solveeit Logo

Question

Question: In $\triangle ABC$, with usual notations, if $a, b, c$ are in A. P. Then $a \cos^2 (\frac{C}{2}) + c...

In ABC\triangle ABC, with usual notations, if a,b,ca, b, c are in A. P. Then acos2(C2)+ccos2(A2)=a \cos^2 (\frac{C}{2}) + c \cos^2 (\frac{A}{2}) =

A

3a2\frac{3a}{2}

B

3c2\frac{3c}{2}

C

3b2\frac{3b}{2}

D

3abc2\frac{3abc}{2}

Answer

3b2\frac{3b}{2}

Explanation

Solution

  1. Use the Half-Angle Formula:

    In any triangle, one useful formula is:

    cos2(A2)=s(sa)bc,cos2(C2)=s(sc)ab\cos^2\left(\frac{A}{2}\right) = \frac{s(s-a)}{bc}, \quad \cos^2\left(\frac{C}{2}\right) = \frac{s(s-c)}{ab},

    where s=a+b+c2s = \frac{a+b+c}{2} is the semiperimeter.

  2. Substitute into the Expression:

    acos2(C2)+ccos2(A2)=as(sc)ab+cs(sa)bca\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = a\frac{s(s-c)}{ab} + c\frac{s(s-a)}{bc}

    This simplifies to:

    s(sc)b+s(sa)b=s[(sc)+(sa)]b\frac{s(s-c)}{b} + \frac{s(s-a)}{b} = \frac{s[(s-c)+(s-a)]}{b}.

    Notice that

    (sc)+(sa)=2s(a+c)(s-c)+(s-a) = 2s - (a+c).

    Since s=a+b+c2s = \frac{a+b+c}{2}, we have:

    2s=a+b+cso2s(a+c)=b2s = a+b+c \quad \text{so} \quad 2s - (a+c) = b.

    Therefore,

    acos2(C2)+ccos2(A2)=sbb=sa\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{s\cdot b}{b} = s.

  3. Use the A.P. Condition:

    Since aa, bb, cc are in A.P., we have:

    b=a+c2a+b+c=(a+c)+b=2b+b=3bb = \frac{a+c}{2} \quad \Rightarrow \quad a+b+c = (a+c)+b = 2b+b = 3b.

    Hence,

    s=a+b+c2=3b2s = \frac{a+b+c}{2} = \frac{3b}{2}.

Therefore, acos2(C2)+ccos2(A2)=3b2a\cos^2\left(\frac{C}{2}\right)+c\cos^2\left(\frac{A}{2}\right)= \frac{3b}{2}.