Solveeit Logo

Question

Mathematics Question on Vector Algebra

In triangle ABC which of the following is not true.
Vector

A

AB+BC+CA=0\vec{AB}+\vec{BC}+\vec{CA}=\vec{0}

B

AB+BCAC=0\vec{AB}+\vec{BC}-\vec{AC}=\vec{0}

C

AB+BCCA=0\vec{AB}+\vec{BC}-\vec{CA}=\vec{0}

D

ABCB+CA=0\vec{AB}-\vec{CB}+\vec{CA}=\vec{0}

Answer

AB+BCCA=0\vec{AB}+\vec{BC}-\vec{CA}=\vec{0}

Explanation

Solution

The correct answer is C:AB+BCCA=0\vec{AB}+\vec{BC}-\vec{CA}=\vec{0}
Vector
On applying the triangle law of addition in the given triangle,we have:
AB+BC=AC\vec{AB}+\vec{BC}=\vec{AC}
AB+BC=CA\vec{AB}+\vec{BC}=\vec{-CA}
AB+BC+CA=0\vec{AB}+\vec{BC}+\vec{CA}=\vec{0}
∴The equation given in alternative A is true.
AB+BC=AC\vec{AB}+\vec{BC}=\vec{AC}
AB+BCAC=0\vec{AB}+\vec{BC}-\vec{AC}=\vec{0}
∴The equation given in alternative B is true.
From equation(2),we have:
ABCB+CA=0\vec{AB}-\vec{CB}+\vec{CA}=\vec{0}
∴The equation given in alternative D is true.
Now,consider the equation given in alternative C:
AB+BCCA=0\vec{AB}+\vec{BC}-\vec{CA}=\vec{0}
AB+BC=CA\vec{AB}+\vec{BC}=\vec{CA}
From equation(1)and (3),we have:
AC=CA\vec{AC}=\vec{CA}
AC=AC⇒\vec{AC}=\vec{-AC}
AC+AC=0⇒\vec{AC}+\vec{AC}=\vec{0}
2AC=0⇒2\vec{AC}=\vec{0}
AC=0⇒\vec{AC}=\vec{0},Which is not true.
Hence,the equation given in alternative C is incorrect.
The correct answer is C.