Solveeit Logo

Question

Question: In triangle ABC, the value of \(\sum_{r = 0}^{n}{nC_{r}}\)a<sup>r</sup> · b<sup>n–r</sup> · cos (rB...

In triangle ABC, the value of r=0nnCr\sum_{r = 0}^{n}{nC_{r}}ar · bn–r · cos

(rB – (n – r) A) is equal to –

A

cn

B

Zero

C

an

D

bn

Answer

cn

Explanation

Solution

r=0nnCr\sum_{r = 0}^{n}{nC_{r}}ar · bn–r · cos (rB – (n – r) A)

= Re (r=0nnCrarbnrei(rB(nr)A))\left( \sum_{r = 0}^{n}{nC_{r}a^{r} \cdot b^{n - r} \cdot e^{i(rB - (n - r)A)}} \right)

= Re (r=0nnCr(aeiB)r(beiA)nr)\left( \sum_{r = 0}^{n}{nC_{r}(a \cdot e^{iB})^{r} \cdot (b \cdot e^{- iA})^{n - r}} \right)

= Re (a eiB + b . e–iA)n

= Re (a cos B + ia sin B + b cos A – ib sin A)n

= (a cos B + b cos A)n = cn ..