Question
Question: In triangle ABC, the value of \(\sum_{r = 0}^{n}{nC_{r}}\)a<sup>r</sup> · b<sup>n–r</sup> · cos (rB...
In triangle ABC, the value of ∑r=0nnCrar · bn–r · cos
(rB – (n – r) A) is equal to –
A
cn
B
Zero
C
an
D
bn
Answer
cn
Explanation
Solution
∑r=0nnCrar · bn–r · cos (rB – (n – r) A)
= Re (∑r=0nnCrar⋅bn−r⋅ei(rB−(n−r)A))
= Re (∑r=0nnCr(a⋅eiB)r⋅(b⋅e−iA)n−r)
= Re (a eiB + b . e–iA)n
= Re (a cos B + ia sin B + b cos A – ib sin A)n
= (a cos B + b cos A)n = cn ..