Question
Question: In triangle ABC, the value of \(\sin 2A + \sin 2B + \sin 2C\) is equal to...
In triangle ABC, the value of sin2A+sin2B+sin2C is equal to
A
4sinA.sinB.sinC
B
4cosA.cosB.cosC
C
2cosA.cosB.cosC
D
2sinA.sinB.sinC
Answer
4sinA.sinB.sinC
Explanation
Solution
We know that A+B+C=180∘ (in ΔABC)
Now, sin2A+sin2B+sin2C
=2sin(A+B)cos(A−B)+2sinCcosC
=2sin(π−C)cos(A−B)+2sinCcos(π−A+B)
=2sinCcos(A−B)−2sinCcos(A+B)
=2sinC{cos(A−B)−cos(A+B)}
=2sinC{2sinAsinB}=4sinAsinBsinC.