Solveeit Logo

Question

Question: In triangle ABC, the value of \(\sin 2A + \sin 2B + \sin 2C\) is equal to...

In triangle ABC, the value of sin2A+sin2B+sin2C\sin 2A + \sin 2B + \sin 2C is equal to

A

4sinA.sinB.sinC4\sin A.\sin B.\sin C

B

4cosA.cosB.cosC4\cos A.\cos B.\cos C

C

2cosA.cosB.cosC2\cos A.\cos B.\cos C

D

2sinA.sinB.sinC2\sin A.\sin B.\sin C

Answer

4sinA.sinB.sinC4\sin A.\sin B.\sin C

Explanation

Solution

We know that A+B+C=180A + B + C = 180{^\circ} (in ΔABC\Delta ABC)

Now, sin2A+sin2B+sin2C\sin 2A + \sin 2B + \sin 2C

=2sin(A+B)cos(AB)+2sinCcosC= 2\sin(A + B)\cos(A - B) + 2\sin C\cos C

=2sin(πC)cos(AB)+2sinCcos(πA+B)= 2\sin(\pi - C)\cos(A - B) + 2\sin C\cos(\pi - \overline{A + B})

=2sinCcos(AB)2sinCcos(A+B)= 2\sin C\cos(A - B) - 2\sin C\cos(A + B)

=2sinC{cos(AB)cos(A+B)}= 2\sin C\{\cos(A - B) - \cos(A + B)\}

=2sinC{2sinAsinB}=4sinAsinBsinC= 2\sin C\{ 2\sin A\sin B\} = 4\sin A\sin B\sin C.