Solveeit Logo

Question

Question: In triangle ABC, the value of \(\sin 2A + \sin 2B + \sin 2C\) is equal to A. \(4\sin A\sin B\sin C...

In triangle ABC, the value of sin2A+sin2B+sin2C\sin 2A + \sin 2B + \sin 2C is equal to
A. 4sinAsinBsinC4\sin A\sin B\sin C
B. 4cosAcosBcosC4\cos A\cos B\cos C
C. 2cosAcosBcosC2\cos A\cos B\cos C
D. 2sinAsinBsinC2\sin A\sin B\sin C

Explanation

Solution

Hint : In this type of question the key observation is to use the angle sum property of a triangle.Sum of all angles in a triangle is 180 degree. Also the trigonometry identities likesinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) are used to solve this question.

Complete step-by-step answer :
In a ΔABC\Delta ABC, we know that
A+B+C=180\angle A + \angle B + \angle C = {180^ \circ }
Subtracting C\angle C on both sides,
A+B=180C\angle A + \angle B = {180^ \circ } - \angle C
Taking sin both sides,
sin(A+B)=sin(180C)\sin \left( {A + B} \right) = \sin \left( {{{180}^ \circ } - C} \right)
sin(180C ) lies in 2nd quadrant \because \sin \left( {{{180}^ \circ } - C{\text{ }}} \right){\text{ lies in 2nd quadrant }}
sin(A+B)=sinC\therefore \sin \left( {A + B} \right) = \sin C
The equation given is,
Let I=sin2A+sin2B+sin2CI = \sin 2A + \sin 2B + \sin 2C
sinA+sinB=2sin(A+B2)cos(AB2)\because \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
I=2sin(2(A+B)2)cos(2(AB)2)+sin2C\Rightarrow I = 2\sin \left( {\dfrac{{2\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{2\left( {A - B} \right)}}{2}} \right) + \sin 2C
On simplifying further,
I=2sin(A+B)cos(AB)+sin2C\Rightarrow I = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin 2C
sin(A+B)=sinC\because \sin \left( {A + B} \right) = \sin C
I=2sin(C)cos(AB)+sin2C\Rightarrow I = 2\sin \left( C \right)\cos \left( {A - B} \right) + \sin 2C
Using sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
I=2sin(C)cos(AB)+2sinCcosC\Rightarrow I = 2\sin \left( C \right)\cos \left( {A - B} \right) + 2\sin C\cos C
On taking 2sinC common,
I=2sin(C)(cos(AB)+cosC)I = 2\sin \left( C \right)\left( {\cos \left( {A - B} \right) + \cos C} \right)
Again in a ΔABC\Delta ABC,
A+B+C=180\angle A + \angle B + \angle C = {180^ \circ }
Subtracting C\angle C on both sides,
A+B=180C\angle A + \angle B = {180^ \circ } - \angle C
Taking cos both sides,
cos(A+B)=cos(180C)\cos \left( {A + B} \right) = \cos \left( {{{180}^ \circ } - C} \right)
cos(180C ) lies in 2nd quadrant \because \cos \left( {{{180}^ \circ } - C{\text{ }}} \right){\text{ lies in 2nd quadrant }}
cos(A+B)=cosC\Rightarrow \cos \left( {A + B} \right) = - \cos C
Or,
cosC=cos(A+B)\cos C = - \cos \left( {A + B} \right)
On putting cosC=cos(A+B)\cos C = - \cos \left( {A + B} \right) in I,
I=2sin(C)(cos(AB)cos(A+B))\Rightarrow I = 2\sin \left( C \right)\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)
cosA+cosB=2sin(A+B2)sin(AB2)\because \cos A + \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
 On applying,\therefore {\text{ On applying,}}
I=2sin(C)(2sinAB+(A+B)2sinAB(A+B)2)\Rightarrow I = 2\sin \left( C \right)\left( { - 2\sin \dfrac{{A - B + \left( {A + B} \right)}}{2}\sin \dfrac{{A - B - \left( {A + B} \right)}}{2}} \right)
On simplifying,
I=2sin(C)(2sinAsin(B))\Rightarrow I = 2\sin \left( C \right)\left( { - 2\sin A\sin \left( { - B} \right)} \right)
sin(x)=sinx\because \sin \left( { - x} \right) = - \sin x
I=2sin(C)(2sinAsinB)\Rightarrow I = 2\sin \left( C \right)\left( {2\sin A\sin B} \right)
On simplifying further,
I=4sinAsinBsinCI = 4\sin A\sin B\sin C
So, the correct answer is “Option A”.

Note : Remember that in first quadrant all trigonometry functions are positive, in second quadrant only sinθ\sin \theta is positive, in third quadrant only tanθ\tan \theta is positive and in fourth quadrant only cosθ\cos \theta is positive. Calculations should be done carefully to avoid any mistake. After the final answer is found out it can be checked that whether it satisfies the original equation given in the question by simply substituting its value in the equation and if it does not satisfy the equation then the solution must be rechecked. The equation should be solved in accordance with the identities which would result in the correct solution.