Solveeit Logo

Question

Question: In triangle ABC, right-angled at B, if \(tan{\rm{A}} = \dfrac{1}{{\sqrt 3 }}\), find the value of: ...

In triangle ABC, right-angled at B, if tanA=13tan{\rm{A}} = \dfrac{1}{{\sqrt 3 }}, find the value of:
i) sinAcosC+cosAsinC\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}}
ii) cosAcosCsinAsinCcos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}}

Explanation

Solution

Use the right-angle triangle Pythagoras theorem. Find the values of sinAcosC+cosAsinC\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}} and cosAcosCsinAsinCcos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}}. Right angle means the angle is 9090^\circ . It consists of six trigonometric ratios such as sin,cos,tan,cot,secsin, cos, tan, cot, sec and coseccosec.

Complete step by step solution:
We know from the problem that tanA=13tan{\rm{A}} = \dfrac{1}{{\sqrt 3 }}.
With the help of above information we can draw the right-angle triangle as we know that tan A is the ratio of perpendicular and base of a right angled triangle.

Now, apply the right-angle triangle Pythagoras theorem for the above triangle.
(Hypotenuse)2=(Height)2+(Base)2 AC2=AB2+BC2{\left( {{\rm{Hypotenuse}}} \right)^2} = {\left( {{\rm{Height}}} \right)^2} + {\left( {{\rm{Base}}} \right)^2}\\\ {\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}
Substitute the values from the above diagram AB=3{\rm{AB}} = \sqrt 3 and BC=1{\rm{BC}} = 1 in AC2=AB2+BC2{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}.
AC2=AB2+BC2 =(3)2+(1)2 =3+1 =4{\rm{A}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^{\rm{2}}}\\\ = {\left( {\sqrt 3 } \right)^2} + {\left( 1 \right)^2}\\\ = 3 + 1\\\ = 4
We can take the square root of the above equation.
AC=4 =2{\rm{AC}} = \sqrt 4 \\\ = 2
Hence, the hypotenuse of the triangle from the above result is 2.
Now we also calculate the value of sinA\sin {\rm{A}} from the formula below.
sinA=BaseHypotenuse =BCAC =12\sin {\rm{A}} = \dfrac{{{\rm{Base}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{BC}}}}{{{\rm{AC}}}}\\\ = \dfrac{1}{2}
Hence, the value of sinA\sin {\rm{A}} from the above result is 12\dfrac{1}{2}.
Now, we also calculate the value of cosA\cos {\rm{A}} from the formula below.
cosA=HeightHypotenuse =ABAC =32\cos {\rm{A}} = \dfrac{{{\rm{Height}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{AB}}}}{{{\rm{AC}}}}\\\ = \dfrac{{\sqrt 3 }}{2}
Hence, the value of cosA\cos {\rm{A}} from the above result is 32\dfrac{{\sqrt 3 }}{2}.
Now, calculate the value of sinC\sin {\rm{C}}:
sinC=BaseHypotenuse =ABAC =32\sin {\rm{C}} = \dfrac{{{\rm{Base}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{AB}}}}{{{\rm{AC}}}}\\\ = \dfrac{{\sqrt 3 }}{2}
Hence, the value of sinC\sin {\rm{C}} is 32\dfrac{{\sqrt 3 }}{2}.
Now, calculate the value of cosC\cos {\rm{C}}:
cosC=HeightHypotenuse =BCAC =12\cos {\rm{C}} = \dfrac{{{\rm{Height}}}}{{{\rm{Hypotenuse}}}}\\\ = \dfrac{{{\rm{BC}}}}{{{\rm{AC}}}}\\\ = \dfrac{1}{2}
Hence, the value of cosC\cos {\rm{C}} is 12\dfrac{1}{2}.
(i) Solve the trigonometric relation sinAcosC+cosAsinC\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}}.
Substitute the values sinA=12,cosA=32,sinC=32,andcosC=12\sin {\rm{A}} = \dfrac{1}{2},\cos {\rm{A}} = \dfrac{{\sqrt 3 }}{2},\sin {\rm{C}} = \dfrac{{\sqrt 3 }}{2},{\rm{ and }}\cos {\rm{C}} = \dfrac{1}{2} in sinAcosC+cosAsinC\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}}.
sinAcosC+cosAsinC=(12)(12)+(32)(32) =14+34 =44 =1\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right)\\\ = \dfrac{1}{4} + \dfrac{3}{4}\\\ = \dfrac{4}{4}\\\ = 1

Hence, the value of the trigonometric relation sinAcosC+cosAsinC\sin {\rm{A}}\cos {\rm{C}} + \cos {\rm{A}}\sin {\rm{C}} is 1.

(ii) Solve the trigonometric relation cosAcosCsinAsinCcos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}}.
Substitute the values sinA=12,cosA=32,sinC=32,andcosC=12\sin {\rm{A}} = \dfrac{1}{2},\cos {\rm{A}} = \dfrac{{\sqrt 3 }}{2},\sin {\rm{C}} = \dfrac{{\sqrt 3 }}{2},{\rm{ and }}\cos {\rm{C}} = \dfrac{1}{2} in cosAcosCsinAsinCcos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}}.
cosAcosCsinAsinC=(32)(12)(12)(32) =3434 =0cos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{2}} \right) - \left( {\dfrac{1}{2}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right)\\\ = \dfrac{{\sqrt 3 }}{4} - \dfrac{{\sqrt 3 }}{4}\\\ = 0

Hence, the value of the trigonometric relation cosAcosCsinAsinCcos{\rm{A}}\cos {\rm{C}} - \sin {\rm{A}}\sin {\rm{C}} is 0.

Note: Here we use the Pythagoras theorem to solve the trigonometric values such as sinA\sin {\rm{A }} and cosA\cos{\rm{A}}. The trigonometric values cosec, sec and cot are the opposite values of sin, cos and tan respectively.