Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

In triangle ABC, right-angled at B, if tan A =13\frac{ 1}{\sqrt{3}}. find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C

Answer

tan A = 13\frac{1}{\sqrt3}

BCAB=13\frac{BC}{AB} = \frac{1}{\sqrt3}

In triangle ABC,right-angled at B,if tan A=1/√3
If BC is k, then AB will be 3\sqrt3 k, , where k is a positive integer.
In ΔΔ ABC,
AC2= AB2+BC2\text{AC}^ 2 =\text{ AB}^ 2 + \text{BC}^ 2
AC2=(3k)2+(k)2\text{AC}2=(\sqrt3 k)^2+(k)^2
AC2=3k2+k2
AC2=4k2
AC = 2k

Sin A=BCAC=12\text{Sin A} =\frac{ BC}{AC} =\frac{ 1}{2}

Cos A=ABAC=32\text{Cos A} =\frac{ AB}{AC} = \frac{\sqrt3}{2}

Sin C=ABAC=32\text{Sin C} =\frac{ AB}{AC} = \frac{\sqrt3}{2}

Cos C=BCAC=12\text{Cos C} = \frac{BC}{AC} = \frac{1}{2}

(i) sin A cos C + cos A sin C =(12)×(12)+32×32=14+34=1(\frac{1}{2}) ×(\frac{1}{2} )+\frac{ \sqrt3}{2} ×\frac{\sqrt3}{2} = \frac{1}{4} +\frac{ 3}{4} = 1

(ii) cos A cos C – sin A sin C =(32)(12)(12)(32)=0(\frac{\sqrt3}{2} )(\frac{1}{2}) – (\frac{1}{2}) (\frac{\sqrt3}{2} ) = 0