Solveeit Logo

Question

Question: In triangle $ABC$, $AB = AC$ and $\angle A = 100^\circ$. $D$ is the point on $BC$ such that $AC = DC...

In triangle ABCABC, AB=ACAB = AC and A=100\angle A = 100^\circ. DD is the point on BCBC such that AC=DCAC = DC, and FF is the point on ABAB such that DFDF is parallel to ACAC. Determine DCF\angle DCF.

A

30^\circ

B

40^\circ

C

60^\circ

D

70^\circ

Answer

60^\circ

Explanation

Solution

  1. In ABC\triangle ABC, AB=ACAB = AC and A=100\angle A = 100^\circ. Thus, B=C=(180100)/2=40\angle B = \angle C = (180^\circ - 100^\circ)/2 = 40^\circ.
  2. In ADC\triangle ADC, AC=DCAC = DC and ACD=ACB=40\angle ACD = \angle ACB = 40^\circ. Thus, DAC=ADC=(18040)/2=70\angle DAC = \angle ADC = (180^\circ - 40^\circ)/2 = 70^\circ.
  3. Since DFACDF \parallel AC, FDB=ACB=40\angle FDB = \angle ACB = 40^\circ (corresponding angles).
  4. Also, since DFACDF \parallel AC, FDC=ACD=40\angle FDC = \angle ACD = 40^\circ (alternate interior angles).
  5. In DFC\triangle DFC, DFC=180FDBB=1804040=100\angle DFC = 180^\circ - \angle FDB - \angle B = 180^\circ - 40^\circ - 40^\circ = 100^\circ. (This step is incorrect. DFC\angle DFC is not an angle in DFC\triangle DFC directly from FDB\angle FDB and B\angle B. Instead, consider AFD\angle AFD. Since DFACDF \parallel AC, BFD=BAC=100\angle BFD = \angle BAC = 100^\circ (corresponding angles). Then AFD=180100=80\angle AFD = 180^\circ - 100^\circ = 80^\circ.)
  6. In DFC\triangle DFC, DCF=180FDCDFC=1804080=60\angle DCF = 180^\circ - \angle FDC - \angle DFC = 180^\circ - 40^\circ - 80^\circ = 60^\circ.