Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

In ABC\triangle A B C the mid points of the sides AB,BCA B, B C and CAC A are respectively (1,0,0),(0(1,0,0),(0, m,0)m , 0) and (0,0,n)(0,0, n ). Then, AB2+BC2+CA2l2+m2+n2\frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{2}+n^{2}} is equal to

A

2

B

4

C

8

D

16

Answer

8

Explanation

Solution

Let A=(x1,y1,z1),A =\left( x _{1}, y _{1}, z _{1}\right), B=(x2,y2,z2),B =\left( x _{2}, y _{2}, z _{2}\right), C=(x3,y3,z3)C =\left( x _{3}, y _{3}, z _{3}\right) From the figure, x1+x2=21,y1+y2=0,z1+z2=0,x _{1}+ x _{2}=21, y _{1}+ y _{2}=0, z _{1}+ z _{2}=0, [midpoint formula] x2+x3=0,y2+y3=2m,z2+z3=0x _{2}+ x _{3}=0, y _{2}+ y _{3}=2 m , z _{2}+ z _{3}=0 and x1+x3=0,y1+y3=0,z1+z3=2nx _{1}+ x _{3}=0, y _{1}+ y _{3}=0, z _{1}+ z _{3}=2 n On solving, we get x1=1,x2=1,x3=1x _{1}=1, x _{2}=1, x _{3}=-1, y1=m,y2=m,y3=my _{1}=- m , y _{2}= m , y _{3}= m and z1=n,z2=n,z3=nz_{1}=n, z_{2}=-n, z_{3}=n \therefore Coordinates are A(1,m,n),B(1,m,n)A (1,- m , n ), B (1, m ,- n ) and C(1,m,n)C (-1, m , n ) AB2+BC2+CA212+m2+n2\therefore \frac{ AB ^{2}+ BC ^{2}+ CA ^{2}}{1^{2}+ m ^{2}+ n ^{2}} =4m2+4n2+412+4n2+(412+4m2)12+m2+n2=\frac{4 m ^{2}+4 n ^{2}+41^{2}+4 n ^{2}+\left(41^{2}+4 m ^{2}\right)}{1^{2}+ m ^{2}+ n ^{2}} =8=8