Question
Mathematics Question on Three Dimensional Geometry
In △ABC the mid points of the sides AB,BC and CA are respectively (1,0,0),(0, m,0) and (0,0,n). Then, l2+m2+n2AB2+BC2+CA2 is equal to
A
2
B
4
C
8
D
16
Answer
8
Explanation
Solution
Let A=(x1,y1,z1), B=(x2,y2,z2), C=(x3,y3,z3) From the figure, x1+x2=21,y1+y2=0,z1+z2=0, [midpoint formula] x2+x3=0,y2+y3=2m,z2+z3=0 and x1+x3=0,y1+y3=0,z1+z3=2n On solving, we get x1=1,x2=1,x3=−1, y1=−m,y2=m,y3=m and z1=n,z2=−n,z3=n ∴ Coordinates are A(1,−m,n),B(1,m,−n) and C(−1,m,n) ∴12+m2+n2AB2+BC2+CA2 =12+m2+n24m2+4n2+412+4n2+(412+4m2) =8