Solveeit Logo

Question

Physics Question on Youngs double slit experiment

In the Young's double slit experiment a monochromatic source of wavelength λ\lambda is used. The intensity of light passing through each slit is I0I _{0}. The intensity of light reaching the screen SCS _{ C } at a point PP, a distance XX from OO is given by (Take d<<Dd < < D )

A

Iocos2(πDλdx)I _{ o } \cos ^{2}\left(\frac{\pi D }{\lambda d } x \right)

B

4Iocos2(πdλDx)4 I _{ o } \cos ^{2}\left(\frac{\pi d }{\lambda D } x \right)

C

Iosin2(πd2λDx)I_{o} \sin ^{2}\left(\frac{\pi d}{2 \lambda D} x\right)

D

4Iocos(πd2λDx)4 I _{ o } \cos \left(\frac{\pi d }{2 \lambda D } x \right)

Answer

4Iocos2(πdλDx)4 I _{ o } \cos ^{2}\left(\frac{\pi d }{\lambda D } x \right)

Explanation

Solution

ϕ=(2πλ)\phi=\left(\frac{2 \pi}{\lambda}\right) path difference
Path difference =dsinθ= d \sin \theta
=d[xD]= d \left[\frac{ x }{ D }\right]
ϕ=2πλ[dxD]\phi=\frac{2 \pi}{\lambda}\left[\frac{ dx }{ D }\right]
I=4Iocos2ϕ2I=4 I_{o} \cos ^{2} \frac{\phi}{2}
=4Iocos2πdλDx=4 I _{ o } \cos ^{2} \frac{\pi d }{\lambda D } \cdot x