Solveeit Logo

Question

Question: In the triangle ABC, \(\overset{\rightarrow}{AB} = \mathbf{a},\overset{\rightarrow}{AC} = \mathbf{c}...

In the triangle ABC, AB=a,AC=c,BC=b\overset{\rightarrow}{AB} = \mathbf{a},\overset{\rightarrow}{AC} = \mathbf{c},\overset{\rightarrow}{BC} = \mathbf{b}, then

A

a+b+c=0\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}

B

a+bc=0\mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}

C

ab+c=0\mathbf{a} - \mathbf{b} + \mathbf{c} = \mathbf{0}

D

a+b+c=0- \mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}

Answer

a+bc=0\mathbf{a} + \mathbf{b} - \mathbf{c} = \mathbf{0}

Explanation

Solution

AB+BC+CA=0a+bc=0.\overset{\rightarrow}{AB} + \overset{\rightarrow}{BC} + \overset{\rightarrow}{CA} = 0 \Rightarrow \mathbf{a} + \mathbf{b} - \mathbf{c} = 0.